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ABSTRACT

For many transport problems involving 1-D flow, a significant

amount of solute might move in the direction transverse to the flow.

The analytical description and the experimental determination of

transverse solute movement are more complicated than for longitudinal

solute movement, and quite often simplifying assumptions are made to

predict transverse transport.

This publication reports how the advection-dispersion equation

was solved analytically to study transient solute transport in a

two-dimensional semi-infinite isotropic porous medium (half-plane) with

a step change in concentration along the inlet during i-D flow. The

solution was obtained with Laplace and Fourier transforms and verified

with various numerical and analytical solutions. This solution can be

used to determine longitudinal and transverse dispersion coefficients

in a relatively fast and straightforward manner. It can also be used to

evaluate the validity of simplifying assumptions (steady-state, no

longitudinal dispersion) for other solutions.

The importance of transverse dispersion for solute transport was

investigated numerically for three cases with a finite element code.

The first case involved 1-D flow parallel to the interface of two

layers with differing pore water velocity. The early arrival of the

solute in the low permeability layer and the increase in solute

vi



spreading for both layers, as a result of transverse dispersion, were

demonstrated. Two other examples concerned transport of a pollutant

from a point source located at the soil surface. The magnitude of the

transverse dispersion coefficient influenced the region to which the

pollution extended, as well as the intensity of the pollution. Finally,

transverse dispersion was shown to affect the movement of a pollutant

to a drainage pipe.
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INTRODUC'rION

Transport of soluble chemicals in porous media, an important

topic for many researchers working in engineering, agriculture, and

hydrology, is generally assumed to occur by advection and dispersion.

Because of the large variability in the field, use of the mass balance

equation, on which the advection-dispersion equation or ADE is based,

is being questioned to describe transport in natural soils. Although

this subject is still under active investigation, application of the

ADE is likely to continue for research purposes and as such will be

used in this study. From the two terms contributing to the total solute

flux, the advective flux is generally known or can easily be obtained

by solving the flow problem. The autonomous dispersive flux occurs

because of differences in concentrations. Much work has been published

on dispersion phenomena, in particular to investigate the dispersion

tensor (1). The dispersion in the direction of flow (longitudinal

dispersion), is noticeably different from the dispersion perpendicular

to the direction of flow (transverse dispersion). The mechanisms

causing transverse dispersion are molecular diffusion and "wandering"

from the flow path (17).

Solute movement in the transverse direction has to be taken into

account for transport modeling whenever a gradient in concentration

occurs in that direction (e.g., in the case of a non-uniform solute

source or velocity distribution). Assuming that the medium is
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isotropic, the 2-D transport equation needs to be used to describe

solute transport and both longitudinal and transverse dispersion

coefficients need to be known. The solution is generally achieved with

numerical methods. However, analytical solutions are available for a

number of situations. These solutions possess a greater flexibility and

do not suffer from some of the errors associated with numerical

solutions. Ogata (12) solved the transport equation analytically for

radial dispersion from a circular source while ignoring longitudinal

dispersion. Harleman and Rumer (8) presented an analytical solution for

the 2-D ADE for steady conditions assuming that longitudinal dispersion

could be neglected. Analytical solutions for steady transport, which

accounted for longitudinal dispersion, were provided by Grane and

Gardner (6) and Verruijt (22). Bruch and Street (3) obtained a series

solution for 2-D transport in a finite system. Yule and Gardner (23)

used an analytical solution to describe transport from a line source,

ignoring longitudinal dispersion. Van Duijn and van der Zee (20)

obtained approximate solutions to describe transport parallel to an

interface separating two different porous media while neglecting

longitudinal dispersion. Furthermore, Bear (1) discussed methods to

obtain analytical solutions for some specific problems.

All of the above solutions have some disadvantages, notably the

neglect of longitudinal dispersion. Therefore, the objective of this

study was to provide an analytical solution for the two-dimensional

transport problem which accounts for both longitudinal and transverse

dispersion. This solution can be used to determine the two dispersion

coefficients simultaneously.



Quantitative information about the dispersion coefficients is

generally obtained by displacement experiments (15). The magnitude of

the dispersion depends not only on the flow parameters, but also on

particle size distribution, particle shape, heterogeneity of the porous

medium, the presence of a stagnant phase, and differences in density

and viscosity of the displacing and the displaced liquids (14).

Compared to the work published on the longitudinal dispersion

coefficient, DL, relatively few results have been reported on the

transverse dispersion coefficient, DT. Values for Dare more difficult
To T

to obtain than values for DL, because the concentration distribution

needs to be measured in a direction perpendicular to the flow. In some

instances, DT is therefore considered to be equal to the coefficient of

molecular diffusion. However, Grane and Gardner (6) concluded that "the

mechanism of transverse dispersion at high flow rate is dominated by

the structure or grain size of the porous medium and influenced only

slightly, if at all, by molecular diffusion." Measurements of

transverse dispersion coefficients were reported by Simpson (17) and

Harleman and Rumer (8). A number of studies have been performed to

determine the dependency of DT on the pore water velocity, and the

Reynolds and Peclet numbers (9, 10). Yule and Gardner (23) measured

both D and D for unsaturated media. Han et al. (7) used media with
L T

various particle size distributions to determine values for DL and DT o

Although analytical solutions are useful for simple laboratory

investigations (to determine transport parameters), they are of limited

value for field and more complex laboratory problems, for which



numerical methods need to be employed to predict solute transport. In

addition to the development of an analytical solution, a finite element

code was therefore employed to study some more complex transport

problems. These problems were selected to meet the primary objective of

studying the role of transverse dispersion in transport phenomena.

THEORY

The assumption is made that the transport of a solute is

adequately described with the ADE. The advection term is one-

dimensional and the dispersion term is two-dimensional. Transport in a

homogeneous and isotropic medium during steady flow conditions is given

by:

ac a 2_C ac a 2c
at DL ax2 8x +DT ay2()

where C is the solute concentration [ML -3 t is time [T], D and D
1.T

2 -1
are the coefficients of longitudinal and transverse dispersion [L T ]

respectively, v is the pore water velocity [LT_] and x and y are

positions at -the coordinate axes parallel and perpendicular to the

direction of flow [L]. The solution domain is a half plane with x-aO and'

the other boundaries at infinity. The problem is solved for a

prescribed concentration at x=O (a Dirichlet condition). The initial

and boundary conditions are (see also the section on the effect of
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c R

C(x,y,0)=f(xy)

ac =0

y<o

y>o

0<x<c -co<y<oo

Quite often, these are also the experimental conditions for the

determination of DT (8). Figure 1 illustrates the problem to be solved.

T

FIG.1. Schematic of 1-D advection and 2-D dispersion in a half plane

for an isotropic medium.
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Solutions for this problem were earlier presented for steady-

state conditions by Grane and Gardner (6), Harleman and Rumer (8) and

Verruijt (22). Grane and Gardner applied a transformation to parabolic

coordinates to obtain a diffusion equation. A disadvantage of this

procedure is that the transformation complicates the boundary

conditions, which is a well known disadvantage of the solution of the

1-D ADE if a moving coordinate system is used. Among others, Harleman

and Rumer (8) presented an analytical solution for a semi-infinite
_ac a~c)

system where longitudinal dispersion was ignored (DLa <D a C
La 2 T ay2

However, the transient state solution is usually of interest for

contaminant transport. It is therefore desirable to obtain a solution,

which facilitates the simultaneous determination of DL and DT -

Bruch and Street (3) obtained a solution consisting of infinite

series for a finite system by using separation of variables. Because

the solution procedure is somewhat complicated, and since we deal in

effect with a half plane, a different solution technique was used.

The solution of Eq.(l), subject to Eq.(2), can be achieved with a

double integral transform, viz. a Laplace transform with respect to t

and a Fourier transform with respect to y. This combines solution

techniques for the 1-D ADE (21) and the 2-D ADE for steady state

conditions (8, 22). It is worthwhile noting that the diffusion

equation for a half plane can be solved in a similar way, except that a

Laplace transform is taken with respect to x (5).

First, the Laplace transform is taken. For completeness the

Laplace transforms of C and are given:



00oo

YC(x,y,t) = I C(x,y,t)exp(-pt) dt = C(x,y,p) (3-a)

0

] = pC - C(x,y,O) (3-b)

The Laplace transforms of Eq.(1) and (2) are:

2- 2
pC - f = D v-- + D (4)

L 2 8x T 2

BC ac o0 (5-a)

C(O,y,p) - (5-b)
P

Proceed by taking the Fourier transform for the infinite y-domain (18):

o00

J C(xyp)] 1 C(x,y,p) exp(iay) dy = C(x,a,p) (6-a)

200

a -2 = -2 C (6-b)
ay

The Fourier transforms of Eq.(4) and (5) are

2-
D dC dC 2 - v
D d - v-d (aDT+)C + = 0 (7)

d 0 (8-a)
dx

C(0,a,p) - (8-b)

P

where f and are the Fourier transforms of [ and .

A solution of Eq.(7), an ordinary differential equation, subject

to Eq. (8) is:



C(x,a,p) = A exp(Alx) + B exp(A2x) + DT2(9)
DTx +p

where A and B are constants determined by the boundary conditions and

where the roots A are given by:

= v /r2v 2  DT 2 p (10)
, 2 2D +  v +I + - + -

L L2DL DL DL

It follows from Eq.(8-a) that A=0. Using the boundary condition at the

inlet, Eq.(8-b), we obtain:

B =-- (11)ON2

P DTX2 + pT

Substitution of Eq.(11) into Eq.(9) yields:

C(x,a,p) = L - 2 ] exp(A2 x) + 2(12)

DT +p DTa + P

For a solution in the x,y,t-domain, inverse transformations need

to be carried out. Although numerical inversion techniques are

available, the use of analytical methods is preferred. First, the

inverse Laplace transformation is carried out, for which purpose the

right-hand side of Eq.(12) is split up into three terms, the first one

being:

1(x,at) = C-1(x)ap)] = - pexp(A2 x)
(13)

~ vx -1 1 x 2

=g exp 2p exp- v D ( 2 + P
D0 pv -+ D.+ 0

DL 4DL

The inverse Laplace operator is evaluated with the help of the

convolution theorem. For the functions h(t) and k(t), with Laplace
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transforms h(p) and k(p), the following convolution integrals can be

defined:

t t

Y?1 h(p)k(p) = h*k = {h(t-W)k() d = h(W)k(t-) d" (14)
0 0

where is a dummy variable. Two functions can be distinguished in the

expression of Eq.(13), which need to be inverted:

h(p) (15-a)

k(p) = exp +D2 + p(15-b)
4DL T

The inverse expressions, h(t) and k(t), are determined with the help of

the shift theorem and a table of Laplace transforms (11):

h(t) = 1 (16-a)

k(t) - x exp + DT t - 4Lt (16-b)

Substitution in Eq.(14), results in

~vx
C1(x,c,t) = g exp 2 D

(17)

tV2 2 2 2 2

4D+x exp- V4LDL

The second term, C2(x,a,p), is inverted in a similar manner, except

that no convolution integral is needed.
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2(x,t) = , C2 (x aP,) = [ -P exp(A2x) =

DTQ2+ p

-f exp exp - D D t] = (18)
DL4DL T p-(v /4DL

- exp(D t)erfc xvt + exp ] erfc[ x+vt
2 T

4Dt 4DLt

where erfc is the complementary error function. The third term of

Eq.(12) can be directly obtained from a table of Laplace transforms:

3(x, ,t) = C3 (x,C, p) = T - = exp(-DTa t) (19)

DTa +p

The resulting expression for C(x,a,t), the Fourier transform of the

analytical solution being sought, is:

C(x,a,t) = C1 + C2 + C3  (20)

The last step of the solution procedure is the application of the

inverse Fourier transform to each of the terms in Eq.(20). The inverse

transformation of C(x,a,t) is formally given by:

00

C(x,y,t) = aIC(xcc,t) Cexp(-iay) dx (21)

2R -00

The inverse of the first term of Eq.(20) is determined as follows.
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Cl(x,y,t) = 9 [ C 1(x,oa,t) = (22)

00 t 22 2 2 2
F" vxAx v ( +4DLDT2a +x

1 10

-- J exp exp 4DLhY exp(-iy) dadJ(

0 I/ m V L LL

Again, the convolution h*k was used to determine the inverse of a

product of two functions h and k, which are now in the Fourier domain:

---- h(a)k(a) exp(-iay) da = h*k = h(y)k(y-v) du (23)
ive e x), n t00

After inspection of the last expression for C1(x, y, t) in Eq. (22), the

h(a) = (24-a)

k(a) = XD 4xp L exp(-DTX 2 )  (24-b)

Without actually determining g, which is the Fourier transform of a

step function, it is clear that h(y) must equal g(y). To determine the

inverse of k(a), note that:
1 2 I- 5 2

-1[ exp(-DTa2)] = e xp 4 ] (25)

ifT

The resulting h(y) and k(y) are:
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h(y) = g(y) =

{I CL

C R

y < 0

y > 0
(26-a)

1 F00'
k~y) jkMa) exp(-ixy) da -

427-!.00

- x exp[ [X-v%
44rL v 4D L9

1
20D

(26-b)

exp F

From Eq. (23) it follows that:

h*k= 1

i27u

00

-00

xh ( v)

DT

expDLp

2 DT

exp[- ()2] (27)

This expression is evaluated by using the substitution p(v-y)/2jCDT

Eq. (26-a) and the properties of the error function (4):

exp) [- ;"'] 2
o4D cL

2
erfc[ yu rfc[ Y

~T 4 T

This result can be substituted in Eq. (22) to obtain the following

expression for C (x,y,t):

t

(29)

exp II x-vj]
4 DL~

2

erfcLr y I C R fc [- y

4 T 4 T

The second term, C2(xyt), is given as follows:

h*k= x

vD

(28)

t'To0x

V~4 TcDL
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x1 +x-vt vx+Vt -12
C2(xy, t)=-erfc - +exp [ erfc [ v fexp(-DTat) (30)

2 DLt 2 Dt

The Fourier inverse term in Eq.(30) is obtained with the convolution

theorem, with:

h(a) = (31-a)

k(a) = exp(-DTa 2t) (31-b)

For convenience, it is assumed that the initial concentration is

constant, viz. C.. Making use of Eq. (25) results in the following
1

inverse functions:

h(y) = f(x,y) = C. (32-a)
1

r 2

k(y) = exp -(32-b)
-4DTt

V2DTt

The inverse transformation can now be carried out by using the

properties of erfc and applying the same substitution variable p:

J-1 exp(-DT(2t)J= h*k = exp-(4DT2 dv= C (33)

Hence:

C2(x,y,t)= -2C irfc x-vt + exp I erfc X+vt(34)

L DL

The last term, C3 (x,y,t), was already evaluated in Eq.(33):

C3 (x, y,t) = -1[ Y exp(-DTa~t)1 = C.(S

The resulting expression for C(x,y,t) is:
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t C Cx {L RyC(x,y,t)= x {L erfc + 2R erfc - x

0 24DL 2 2DT 2/DT (36)
(36)

[ x 2- Ci  x-vt vx It x+vt
exp - d _ {erfc[ x-v- ]+exP [-Derfc t +C.

2 A 2[2 D2
L L L

The integral in Eq.(36) needs to be evaluated numerically, which

is conveniently done with the Gauss-Chebyshev quadrature. The computer

program to calculate C(x,y,t), including the function EXF(A,B) to

obtain exp(A)erfc(B), is given in the Appendix. Notice that the

solution was kept quite general by not specifying f and q. In many

other instances, a simpler expression arises if CL or CR and Ci are

equal to 0. Transport of solutes which are linearly retarded, because

of reactions with the solid phase of the medium, can be described by

dividing the parameters DL, DT and v with the retardation coefficient.

L' T'

VALIDATION OF ANALYTICAL SOLUTION

The solution presented in Eq.(36), including the numerical

integration of the first term, was validated via comparison with

various numerical and analytical solutions for specific values of CL)

C and C. First, the steady state solution of Eq.(1) is used under

the assumption that longitudinal dispersion can be ignored. This

solution was obtained via the Fourier transform of y (18):

C(x,y) = ~C erfc[ + erfc - y (37)

v 4Dtx/v a 4D X/V

The program to evaluate Eq. (37) is also listed in the Appendix.
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During the validation a porous medium with the following

2
arbitrary transport parameters was assumed: DL=25 cm"/d, DT=5 cm2/d,

v=50 cm/d, see table 1. All concentrations were conveniently expressed

as dimensionless quantities C/C , with C being equal to unity. The

dimensionless inlet and initial concentrations were: CL=1 CR=O C.=0.

Figure 2 shows the solutions for various times according to Eq.(36).

The solution for larger times was virtually identical to the

steady-state solution given by Eq. (37). The "invasion" of the solute

into the medium and the flattening of the step front can clearly be

observed.

The solution of equations describing transport problems usually

requires experimental determination of the transport parameters.

Experimental conditions as sketched in figure 1 allow the simultaneous

determination of DL and D . Breakthrough curves, C=C(L,y,t), can be

Table 1. List of Physical and Mathematical Parameters for Calculations

Fig. Units Layer v 0 aL DL cT DT Ax Ay At

L T LT -1  L L2T -1  L L2T -  L L T

22cmd - 50 - - 25 - 5 -
3

4 m d - 0.4 0.4 20 8 4 1.6 60 30 100

6 1 10 0.4 2 20 0.5 5 .Sor
I cm d 1i. 0.01S cII 100 0.4 0.5 50 0.1 10 .25
8

I I 2.5 0.4 2 5 0.1 0.25
A11 1m h 0 . .

11c r II 2..5 0.4 2 5 .1/.5 .25/1.25 1 . .
12

14
15cm d - t 0.4 10 - 1.0/5.0 - 1 1 0.05

16

tSee figure 14 for additional information.
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measured at an arbritray position x=L for a sufficient number of

y-values. The steady state profile, C=C(L,y,w), can be used to

determine DT according to Eq.(37). Values for DL can be determined

subsequently with Eq.(36) via an iteration procedure.

Next, the half-plane solution (Eq.(36)) was compared with the

solution by Bruch and Street (3). The mathematical problem studied by

these authors obeys the following boundary and initial conditions:

0t>
C(0,y,t) = (38-a)

0 -:5y-: n t > 0

C
a 0 x > 0 t > 0y O (38-b)

y=0

aC c 0 x > 0 t > 0 (38-c)
ay y=n

C(cx,y,t)l = bounded 0 - y no  t > 0 (38-d)

C(x,y,O) = 0 x > 0 0 - y - n (38-e)
o

The solution presented by Bruch and Street (3) is:

C(x,y,t)=

o fc x-vt + Pvx-4  x+vt J o .(nme nry
erfc +exp erfc + sin(-)cos(-)

2n D' n r n n

Lo L(39)

V 2  2 DT "

S XP(v 2 J D ]erfc[ x-DLt (D]+(2nJ D[exp - v '.2nno T erfc L L
S X + D  4D + t

exp + 1nal erf oL
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This solution was evaluated numerically with a computer program

containing the EXF(A,B)-function. The geometry according to figure I

was obtained by shifting the y-coordinate by a distance c to the left.

figure 3 contains the results obtained with this solution as well as

the results obtained with the half-plane solution. The results are

almost identical.

For many situations, numerical methods need to be employed in

order to solve the 2-D ADE. To demonstrate the effects of transverse

dispersion on contaminant transport, some simple problems, which were

solved with a finite element code, will be presented in the next

section. But first the input parameters of the code will be discussed

and a comparison will be made between numerical and analytical results.

The code solves 2-D flow and transport problems in isotropic

media and was validated for a variety of transport problems. Somewhat

arbitrary values were used for the calculations, which represent

situations encountered in the laboratory or field. The relevant data

for the calculations of all examples are listed in the table 1. it

should be noted that dimensions of parameters are quite often omitted,

since any set of consistent units can be used.

The apparent dispersion tensor, Da) accounts for mechanical

dispersion and molecular diffusion and can be defined according to Bear

(1):

F = xx Dxy] (40)

a yx Dyy

with
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2 *
D = a TjqI + (a -aOT )qx /Iql + D

xx TL T x xx

D = (a -a ) qq q = Dxy= L- T xqy /Iq Dyx (41)

2 *
D = a Tq + (aL -a T ) q /Iql + D
yy T L y yy

where q denotes the average Darcy velocity with components qx and q

and vector norm ql [LT-1 ], a:L and aT are the transverse and

* *
longitudinal dispersivity [L], respectively, and D and D are

xx yy

components of the apparent coefficient of molecular diffusion [L2T-].

For a volumetric water content 0, the velocity and dispersion terms in

Eq. (1) are rewritten as v=q/0, D =D /0, D =D /0 and it is assumed
x L xx T yy

that D =D =0. The grid system and the time step are chosen based on
yx xy

Ax
the dimensionless Peclet and Courant number. The restraints were: --<5,

L
vat

Ay<Ax, and Ax 
< 1.L

The results of the code were compared with the analytical solution

using vx=0.4 m/d, a L=20 m, a T=4 m, which is assumed to represent a

"field situation." A rectangular grid, with Ax=60 m and Ay=30 m, was

used for the calculations with a timestep of 100 d. The boundary and

initial conditions, for the numerical solution, were as follows:

C(x,y,0) = 0.25 C 0 < x < 600, -150 < y < 150 (42-a)
0

C y < 0, t > 0

C(0,y,t) = o (42-b)

0.5 C y > 0, t > 0
o

The resulting concentration profiles in the transverse direction, for

various t and x, are given in figure 4. The comparison between the

analytical and numerical solution is fair, with the best agreement

found at larger times.



22

X 300 ry I1(ML -- 500 cd
10f

C/Co
0.6

0. 4

0.2

X 600 rn I IME - 1O0 (
1.OT

4 Numerical solution
xAnlytical solution

50 0 50 100 150
Y [in]

C/Co
0.8

06-

0.4.

02-

150 10.(C) 0 0
Y [rn]

+ Numerical solution
x Analytical solution

50 1(.)() 150

X- 300 m TIME 1000 d
l.OT

+ 4. +08.

06
ao

0.4

0.21

150 -100 -50

+Numercoal ouin

xAnalytical solictin

0 50 100 150

/ 600 111 SteaCdy state
41.0

0.4-

xAnal) ticail solution 02

150 100o 50 0 5)0 100 150
Y [in]

X = 300 m :a)teady state
1.0

C/Co 0.-6-

+ tumii~c4l solution
)e Arnalytic at solution

10 100 o 50

0.4

0 50 100 150

Y [mn]

X-- 600 m TIMF = 1000 dI
'l0T

0.8
C/Co

0.6

4 + 0.4-

0.2-

.15O 100 -50 C

+ Numerical solution

xAnalytical solution

-4-----4- .4.+

50 100 150

FIG.4. Comparison of the analytical
(finite element) solution.

(half-plane) and the numerical

Based on the results in this section, the analytical solution

given by Eq. (36) was concluded to be sufficiently validated.
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THE EFFECT OF TRANSVERSE DISPERSION ON SOLUTE TRANSPORT

A sensitivity analysis was conducted to investigate the effect of

transverse dispersion for three transport problems. Concentration

distributions were determined with a finite element code.

The first example concerned a two-layer medium, each layer with

its own characteristics, and flow occurring in the same direction as

the interface. The physical and mathematical characteristics, including

the grid system, are shown in figure 5. The influence of transverse

dispersion during flow along such an interface has been studied by a

number of authors for different inlet conditions (16, 19, 20, 22). The

problem is of interest to study the early occurrence of a solute in a

-=0
Dy

v = IUII/U
i aL= 2 cm

aT =0.5cm

0

v =l100 cm/d

aT = 0.1cm

-2

w . _._._

.... . , *,

._* ..
... ._ _ _ _ -

aC
-0

Dy

C(x,y,0)=0 0<x<6 -2!_y <2

C (0,y,t) = Co -2 _y <2 t > 0

FIG.5. Physical and mathematical characteristics of transport in a
two-layer medium with advection along the interface.
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low permeability layer as a result of transverse dispersion or to study

mixing of salt and fresh water. Furthermore, a layered medium is a

simplification of a heterogeneous medium, and can therefore be used to

investigate transport in heterogeneous media. In particular, the

combined effect of longitudinal and transverse dispersion on the

overall spreading needs to be considered in such a case.

Figure 6 shows the concentration profiles in the transverse

direction at x=2 and 6 for various times. To get an impression of the

effect of transverse dispersion, results in the absence of transverse

dispersion (1-D transport) are included as well. It should be noted

that transverse dispersion causes movement of the solute from the high

to the low permeability layer. This is particularly important at the

early stage, virtually all the solute in the low permeability layer is

then present due to (transverse) dispersive rather than advective

transport.

For- the half-plane solution it was assumed that a first- or

concentration-type boundary condition could be used at the inlet.

However, Parker and van Genuchten (1984) showed for 1-D transport that

the use of a third- or flux-type boundary condition is more

appropriate. Although the solution for the steady-state problem is not

influenced by the inlet condition, the solution for the transient

problem will be. Therefore a comparison was made between results

obtained with the finite element code for the two conditions. Figure 7

shows concentration profiles at x=6 which were obtained by using a flux

and a concentration boundary condition. As is the case for 1-D
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transport, the profile obtained with the flux boundary lies below the

profile obtained with the concentration boundary condition. At the

initial stage, a mass balance error is involved in the use of the

first-type boundary condition at the inlet. This error is considered to

be minor, except for systems with a small length in the longitudinal

direction during the inital stage of solute displacement.

Transverse dispersion also has an impact on the longitudinal

concentration profile because it tends to annihilate concentration

gradients orthogonal to the direction of flow. Figure 8 shows

concentration profiles in the direction of flow as determined by the 1-
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and 2-D transport equation. The results imply that application of the

l-D ADE to determine longitudinal dispersion coefficients in a

(heterogeneous) medium with, for whatever reason, concentration

gradients in the transverse direction, leads to erroneous values for

D Also included is the front, which would occur if DT=0 (l-D
U T

transport). Longitudinal dispersion causes the front to spread

symmetrically around the step front in the direction of flow. Lateral

dispersion causes the front to deviate from symmetry in this direction.

Because of differences in D and v for both layers, no symmetry will
T

occur in the lateral direction.

The next example concerns 2-D transport from a bounded surface

area in a two-layer medium with an interface perpendicular to the

direction of flow. The bottom part of the medium, layer II, consists of

particles of a different size and shape resulting in a higher value for

a than for layer I. A schematic of the problem is given in Figure 9,

which also includes the mathematical conditions and the physical

parameters. The problem is symmetrical about y=O. To evaluate how

transverse dispersion causes a contaminant to deviate from the

advective flow path, the path being determined by the location of the

point source and the flow field, solute transport was simulated for two

different values of a T for the bottom layer. To illustrate the

transverse dispersion, the longitudinal dispersion was assumed to be

identical for both layers.
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Lines of equal dimensionless concentration C/C0 for various ti mes

600

are shown in figure 10A for equal a~ -values for both layers a nd in
T

figure lOB for an a T-value that is 5 times greater for the bottom than

the top half of the profile. The shape of the plume in figure 10B

differs from the one in figure 10A once the front reaches the bottom
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layer. The plume is restricted to a small area, with relatively high

concentrations, in figure 10A, whereas figure 10B shows that, because

of the increase in aT, the plume spreads out over a larger area in

layer II with relatively low concentrations. Eventhe concentrations in

the top layer are influenced by the degree of spreading in the bottom

layer. This is also shown in. figure 11, which shows the longitudinal

profile for various values of y and t. Breakthrough curves at various

positions are presented in figure 12. An increase in transverse

dispersion (x>30) lowers the maximum concentration of the solute (e.g.,

x=60 and y=O), but increases the area where the solute will occur

(e.g., x=60 and y=10). The interpretation of these results depends on

the type of contaminant. If low levels of solute are acceptable,

increased transverse dispersion is favorable in contrast with

substances which already pose a threat at low concentrations and need

to be removed.

The last example, illustrated in Fig. 13, deals with 2-D transport

from the surface in an isotropic medium. At depth d, drainage pipes

with spacing 1 are present to collect the contaminant to prevent it

from reaching an underlying aquifer. A likely approach to do so is to

optimize l/d and the flow regime. However, this is beyond the scope of

this analysis, which merely concerns the effect of transverse

dispersion.
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First, the (steady) flow regime was determined with the code

followed by the solution of the transport problem. Because of the

symmetry, a solution for the region O<x<5 was sufficient. The grid

system is shown in figure 14, along with equipotential lines and the

velocity field, which were obtained by using arbitrary values for the

hydraulic conductivity and assuming an impervious bottom. The ADE was

solved for this velocity field, using two values for aT  namely 1 and 5

cm. Because of the low velocity at certain positions, molecular

diffusion contributes significantly to the overall dispersion.

Lines of equal concentration at various times are given in

figure 15. The concentration profile is clearly influenced by the

advection term, as indicated by the pattern around the drain;

relatively high concentrations exist above the pipe. The solute will

move in a direction orthogonal to the radial flow field as a result of

transverse dispersion. An increase in X T causes the higher solute

concentration to reach the aquifer (x<5) sooner. Furthermore, a better

recovery (removal via the drain) of the contaminant is achieved in case

of a low value of aT. This is also illustrated in figure 16, which

contains breakthrough curves for y=7 (just above the drainage pipe) and

y=3 (at the boundary with the aquifer). Close to the drainage pipe (x=4

and y=7) the concentration is higher for aT=1 cm than for aT=5 cm

indicating that more solute can be removed from the system at lower

values for aT. At the other three locations, the higher transverse

dispersion leads to higher solute concentrations.
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Finally, the "smoothness" of the concentration profiles in figure

15 (especially for a =5 cm), despite the changes in the flow vector, is
T

pointed out. This is attributed to (transverse) dispersion, which has a

tendency to annihilate concentration gradients.
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SUMMARY AND CONCLUSIONS

An analytical solution was obtained for the 2-D ADE for a

semi-infinite medium (half-plane) with l-D flow using a double integral

transform. Although the solution contains an integral expression, this

integral could conveniently be evaluated using Gauss-Chebyshev

quadrature. The half-plane solution was validated with various

analytical and numerical solutions. Excellent agreement was found with

other analytical solutions, whereas the numerical solution showed

reasonable agreement with the half-plane solution. The solution can be

used to determine values for DL during transient conditons and for DT

during steady-state.

A finite element code was used in a sensitivity analysis to

investigate the effect of transverse dispersion on transport. The first

case involved transport in a medium consisting of two layers with

different velocities and flow in the same direction as the interface.

The computations pointed out that a substantial amount of solute moved

from the high to the low permeability layer. This explained the "early"

appearance of solute in the low permeability region and is one of the

reasons for an increase in dispersion in heterogeneous media.

Two cases of point source pollution were considered: first, the

development of a solute plume during downward flow was shown to depend

on transverse dispersion, and second, the transport in a non-uniform

flow field to a drainage pipe was studied. Attempts to collect the

pollutant depend, among other things, on the value of the transverse

di spers ivi ty.
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APPENDIX. Listing of Computer Programs

ANLOTR: Solution of the 1-D advection and 2-D dispersion equation
according to Eq.(36) (transient).

SSTR Solution of the 1-D advection and 1-D dispersion equation
according to Eq.(37) (steady-state).
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ANLOTR

//ANLOTR JOB (AYL59FL,124),'FEIKE LEIJ',MSGCLASS=P,

// NOTIFY=AYL59FL,MSGLEVEL=(1,1),REGION=1024K,TIME=(1,59)
/*ROUTE PRINT RMT4

/*JOBPARM LINES=10

//STEP1 EXEC WATFIV

//WATFIV.SYSIN DD *

/JOB FEIKE,TIME=(5),PAGES=60
C

INTEGER I,J,K,NUMX/11/,NUMY/11/,UP/50/

REAL ARG1,ARG2,CLEFT/1./,CRIGHT/0.5/,CZERO/1./,CIN/0.25/

REAL B(21),C(21),CON(21,21),D(21),DL/8./,DT/1.6/

REAL XPOS(21),YPOS(21),VELO/0.40/

REAL DELX/60./,DELY/30./,DUM,NOEM(400),TERM1,TERM2

REAL TIME,FACT(100),HELP(100),NO/0.0/

REAL ROOT(100),STU(21),LOTERM(100),TRTERM(100)

REAL DELTIM/500./,TIMMAX/3000./,UPR/50./

VARIABLES

NUMX

NUMY

CLEFT

CRIGHT

CZERO

CIN

DL
DT

VELO

DELX
DELY

DELTIM

TIMMAX

NUMBER OF NODES IN X-DIRECTION

NUMBER OF NODES IN Y-DIRECTION

ELUENT CONCENTRATION FOR X<O

ELUENT CONCENTRATION FOR X>O

TOTAL SOLUTE CONCENTRATION
INITIAL CONCENTRATION

LONGITUDINAL DISPERSION COEFFICIENT

TRANSVERSE DISPERSION COEFFICIENT

PORE WATER VELOCITY

INCREMENT IN X-DIRECTION
INCREMENT IN Y-DIRECTION
INCREMENT IN TIME

MAXIMUM TIME FOR ANALYTICAL SOLUTION

L2/T

L2/T
L/T
L

L
T

T

C

C

C

C
C

C

C

C

C
C

C

C
C

C
C
C

C

C

C

C
YPOS(1)=-0.5*(NUMY-1)*DELY

DO 20 K=2,NUMY
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PRINT, I****A**A****AAA******AA*******A*************'

PRINT, ' ANLOTR *

PRINT,'* *1

PRINT,'* ANALYTICAL SOLUTION OF THE ADVECTION-DISPERSION '

PRINT,'* EQUATION FOR 2-D TRANSPORT IN A SEMI-INFINITE *

PRINT,'* MEDIUM WITH A STEP INPUT FUNCTION AND A 1-ST TYPE

PRINT,'* BOUNDARY CONPITICN AT THE INLET

PRINT, *

PRINT, ***************************** ******************

INITIALIZE COORDINATE SYSTEM

XPOS(1)=0.0

DO 10 I=2,NUMX

XPOS(I)=XPOS(I-1)+DELX

10 CONTINUE



YPOS(K)=YPOS(K-1 )+DELY

20 CONTINUE

c

C INITIALIZE POSITION DEPENDENT AND TIME INDEPENDENS VARIABLE

C

DO 40 I1,NUMX

c(I)=vELO*xPOS(I )/DL

40 CONTINUE

C

TIME=DELTIM

WHILE(TIME.LE.TIMMAX) DO

C

C INITIALIZE POSITION AND TIME DEPENDENT VARIABLES

C

DO 70 L1I,NUMX

STU(I)=1.253314137*XPOS(I)/(UPR*(SQRT(DL*TIME)))
B(I)=O.S*(XPOS(I)-VELO*TIME)/(SQRT(DL*TIME))

D(I)=0.5*(XPOS(I)+VELO*TIME)/(SQRT(DL*TIME))
70 CONTINUE

C

C EVALUATE THE INTEGRAL

C

DO 100 K1I,NUMY
DO 90 I=2,NUMX

C
TERM1O0.O

DO 80 J=1,UP

DUM=( (2*J-1 )*1.570796327)/UPR

ROOT(J)=C05(DUM)

FACT(J)=SQRT(1 -ROOT(J) )/(ROOT(J)±1.)

LOTERM(J)=SQRT(2*TIIIE*DL*(ROOT(J)+1.))
TRTERM(J)=SQRT(2. ATIME*DT*(ROOT(J)±1 ))
HfELP(J)=0.5*TIME*VELO*(ROOT(J)+.)-
ARG1=-((XPOS(I)-HELP(J))/LOTERM(J))**2
ARG2=YPOS (K) /TRTERM (J)
TERM1=TERM1+O.5*STU(I)*FACT(J)*(CLEFT*EXF(ARG1,ARG2)+

$ CRIGHT*EXF (ARGI ,-ARG2))

80 CONTINUE

CON(I ,K)=TERMI+TERM2

90 CONTINUE

100 CONTINUE

C
C SUPER IMPOSE INLET CONDITIONS
C
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CON(1 ,K)=(CIN+CZERO)/2.

ENDIF

105 CONTINUE

C

PRINT,'

PRINT, 'TIME=' ,TIME

c

PRINT,'

PRINT,' X-COORDINATES'
PRINT,'

PRINT 113,' ' ,(XPOS(I),I=1l1l)

113 FORMAT(' ',A8,11F8.3)
PRINT 113,' ',(XPOS(I),I=12,NUMX)

c

PRINT,'

DO 120 K=1,NUMY

PRINT 112,YPOS(K),(CON(I,K),I=l,1l)
112 FORMAT(' 1,12F8.3)

PRINT 114,' ',(CON(I,K),I=12,NUMX)
114 FORMAT(' 1,A8,10F8.3)
120 CONTINUE

c

TIME=TIME+DELTIM

ENDWHILE

c

STOP

END
c

REAL FUNCTION EXF(Q,Z)
C

REAL LOEF,Q,Z,T,STUP1 ,STUP2,XX,YY,QQ,BOUND/100./
C

EXFO0.O

STUP1=ABS (Q)
QQ=QZ*7
STUP2=ABS (gQ)

C
IF,(STUPI.GT.BOUND .AND. Z.LE.O.O) GO TO 40
IF(Z.NE.O.) GO TO 31

IF(Q.LE.-BOUND) THEN
LOEF=O.

ELSE

LOEF=EXP (Q)
ENDIF
EXFLOE
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YY=T*(.2548296-T*(.2844967-T*(1.4214l4-
$ T*(1.453l52-1.O614O5*T))))
GO TO 33

32 YY=O.564l8958/(XX+.5/(XX+.1/(XX+1.5/(XX+2./
$ (XX+2.5/(XX+I.))))))

33 IF(QQ.LE.-BOUND) THEN
LOEFO0.

ELSE
LOEF=EXP (QQ)

ENDIF
EXF=YY*LOEF

C
34 IF(Q.LE. -BOUND)THEN

LOEF=O.
ELSE

LOEF=EXP (9)
ENDIF
IF(Z.LT.O.) EXF=2.*LOEF-EXF

C
40 CONTINUE

C
RETURN
END

/ GO
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SSTR

//SSTR JOB (AYL59FL,124),'FEIKE LEIJ',MSGCLASSP,
// NOTIFY=AYL59FL,MSGLEVEL=(I1 ,1),REGION=1024K,TIME=(1,59)

/*ROUTE PRINT RMT4

/*JOBPARM LINES=10

//STEP1 EXEC WATFIV

//WATFIV.SYSIN DD *
/JOB FEIKE,TIME=(5),PAGES=60
C

INTEGER I,J,K,NUMX/11/,NUMY/49/,UP

REAL CIN/O.0/,CON(1l,49),CZERO/1.0/,DT/5./

REAL xPOs(11),YPOS(49),VELO/50./,ARG(11,49)

REAL DELX/5./,DELY/0.5/,NO/0.0/

C
C VARIABLES

C NUMX : NUMBER OF NODES IN X-DIRECTION
C NUMY NUMBER OF NODES IN Y-DIRECTION

C CIN INITIAL CONCENTRATION

C CZERO TOTAL CONCENTRATION

C VELO PORE WATER VELOCITY L/T

C DT TRANSVERSE DISPERSION COEFFICIENT L2/T

C DELX SPACE STEP IN X-DIRECTION L

C DELY SPACE STEP IN Y-DIRECTION L

C
PRINT, ***************************************

PRINT,'* S S TR

PRINT,'*

PRINT,'* ANALYTICAL SOLUTION OF THE ADVECTION-DISPERSION'

PRINT,'* EQUATION FOR 2-D TRANSPORT IN A SEMI-INFINITE

PRINT,'* MEDIUM WITH A STEP INPUT FUNCTION AND A 1-ST TYPE *

PRINT,'* BOUNDARY CONDITION AT THE INLET, LONGITUDINAL *

PRINT,'* DISPERSION IS IGNORED.STEADY-STATE APPROXIMATION *

PRINT,'*

PRINT, ***************************************************I

C
C INITIALIZE COORDINATE SYSTEM

c
XPOS(1)=0.0
DO 10 I=2,NUMX

XPOS(I)=XPOS(I-1)+DELX

10 CONTINUE

c
YPOS(1)=-0.5*(NJMY-I)*DELY

DO 20 K=2,NUMY
YPOS(K)=YPOS(K-I)+DELY

20 CONTINUE

C
DO 100 K=1,NUMY

DO 90 I=2,NUMX

ARG(I ,K)=0.5*YPOS(K)/(SQRT( (DT*XPOS(I) )/VELO))

CON(I,K)=0.5*CZERO*EXF(NO,ARG(I,K))+0.5*CIN*EXF(NO,-ARG(I,K))
90 CONTINUE
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100 CONTINUE
C

C SUPER IMPOSE INLET CONDITIONS
C

DO 105 K=1,'NUMY

IF (YPoS(K).LT.-O.00oo1) THEN
CON(1 ,K)=CZERO

ELSE IF (YPOS(K).GT.o.001) THEN

CON(1,K)=CIN

ELSE

CON(1 ,K)=(CIN+CZERO)/2.

ENDIF

10$ CONTINUE
C

PRINT,'

PRINT,' -X-COORDINATES'

PRINT,'I

PRINT 113,' ',(XPOS(I),I=1,NUMX)

113 FORMAT(' ',A8,11F8.3)
C

PRINT,.'

DO 120 K=1,NUMY
PRINT 112,YPOS(K),(CON(I,K),I=1,NUMX)

112 FORMAT(' ',12F8.3)
120 CONTINUE

C

C

STOP'
END

C

REAL FUNCTION EXF(Q,Z)
C

REAL LOEF,,Q,Z,T,ST'UPI ,STUP2,XX,YY,QQ,BOUND/100./

C

EXF=O. 0
STUP1=ABS (Q)
QQ9Q-Z*Z.

STUP2=ABS (QQ)
C

IF (STUP1.GT.BOUND .AND. Z.LE.O.O) GO TO 40
IF(Z.NE.O.) GO TO 31
IF(Q.LE.-BOUND) THEN

LOEF=O.
ELSE

LOEF=EXP (Q)
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IF (XX .GT. 3.0) GO TO 32
Thi.01(1 .O+O.3275911*XX)

YY=T*(.2548296-T*(.2844967-T*(1.4214l4-
$ T*(1.453152.-1.061405*T))))
GO TO 33

32 YYO0.56418958/(XX+.5/(XX+.1/(XX+l.5/(XX+2./
$ (XX+2.5/(XX+i..))))))

33 IF(QQ.LE. -BOUND) THEN
LOEF=O.

ELSE
LOEF=EXP (QQ)

ENDIF
EXF=YY*LOE F

C
34 IF(Q.LE. -BOUND)THEN

LOEF=O.
ELSE

LOEF=EXP (Q)
ENDIF
IF(Z.LT.0.) EXF=2.*LOEF-EXF

C
40 CONTINUE

c
RETURN
END

/GO
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