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ABSTRACT

The study of solute transport in layered media is important to

investigate how solute movement can be slowed by incorporating a

retarding layer in the soil profile and to examine the influence of

soil heterogeneity on solute transport. This is conveniently done by

comparing transport through layered media with transport through

homogeneous media.

A relatively straightforward implicit finite difference method

was used to simulate reactive solute transport in layered and

homogeneous soil profiles. The effects of numerical dispersion and the

differences between the use of a concentration and a flux boundary

condition at the inlet were demonstrated for a homogeneous soil.

Analytical solutions were obtained for a medium consisting of two

layers. Using a flux-type condition at the inlet boundary and

interface resulted in discontinuities in solute concentrations at these

posi tions.

The importance of the exchange capacity and the exchange isotherm

for the simulation of solute transport was investigated for some

hypothetical cases. Both of these phenomena have a strong impact on

solute transport..-Several examples of a solute pulse traveling through

a two-layer medium were presented. Simulation of solute transport

through a soil profile, in which a soil layer ,with low permeability

characteristics (soil barrier) was embedded, showed that the adsorption

capacity of the barrier was not fully utilized to retard the solute

because of dispersive transport.
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INTRODUCTION

Transport of chemicals in soils is of great interest in a number

of areas in agriculture and engineering. This interest is aroused by

the potential of chemicals (fertilizers, pesticides, wastes etc.) to

move from the soil surface through the unsaturated zone of the soil

towards the groundwater. This process generally results in a

deterioration of the quality of soil and water resources. Once a

chemical or solute reaches the groundwater, spread of the chemical is

greatly facilitated by streamflow within the aquifer system. Therefore,

the description of solute movement through the unsaturated zone is an

important research topic.

The two objectives of this study were to (1) simulate 1-D

transport of inorganic salts through homogeneous and layered soils and

(2) investigate the effects of linear versus nonlinear exchange.

Layering of soil, with layers of different physical and chemical

properties, is of interest due to the influence artificial or natural

barriers might have in slowing or preventing the movement of certain

chemicals. The effects of layering are also important to the study of

transport in heterogeneous media. A layered medium, consisting of a

series of homogeneous soil layers, is conceptually equal 'to a

heterogeneous soil. The second objective is important to determine how

much effort should be made to determine exchange properties. The

influence of the cation exchange capacity and the exchange isotherms

are investigated for some hypothetical cases with conditions similar to

our later experimental work (19).



Although solute transport in porous media is most often described

with the advection dispersion equation (ADE) a number of different

approaches have been proposed to model transport because the

application of the ADE might not be justified for many instances in the

field (15). However, the use of the ADE offers distinct advantages

because of its deterministic nature. For a limited number of

situations, analytical solutions are available. In most cases, however,

numerical methods need to be employed, because the specific conditions

for which analytical solutions exist are not encountered in the field.

Unfortunately, these methods do not permit as much insight into the

effects of physical and chemical processes on solute transport as

analytical solutions do, and they are susceptible to computational

errors. When long-term predictions of the behavior of chemicals in the

soil need to be made, careful consideration should be given to the

choice of the numerical model and the processes to be modeled.

A vast amount of work has been published on the numerical

solution of the ADE simulating chemical transport in soils. Finite

difference methods are quite popular for this purpose, because of their

relatively straightforward formulation of the problem (27). However,

the somewhat more Complicated finite element method has been used as

well (e.g., 26). The latter method has distinct advantages when systems

with irregular boundaries are considered. Another method is that of

characteristics, which is less vulnerable to the numerical problems

which plague finite difference solutions.
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Because of the simple geometry of the media and the nature of

this study, viz. the examination of the importance of various physical

and chemical properties on solute transport, the numerical solution of

the ADE was carried out with a finite difference method. Verification

of the solution was accomplished with comparison to analytical

solutions and mass balance calculations.

THEORY

-The problem of transport of a nonlinearly exchanging solute is

formulated for a homogeneous porous medium and for a porous medium

consisting of distinct layers. Analytical solutions are given for

transport in a (homogeneous) one-layer and a two-layer medium subject

to a flux- and a concentration-type boundary condition at the inlet and

the interface. Numerical solutions of the ADE are also given for these

cases, but in addition solutions are presented for a flux-type

condition at the inlet of the soil and a combined flux- and

concentration-type at the interface of soil layers.

Analytical Solution of the ADE for a Nonreactive

Solute in a Homogeneous Medium

For a number of cases, involving simple boundary and initial

conditions and linearly exchanging solutes, analytical solutions of the

ADE are available. These solutions can be utilized to predict

transport, to determine transport parameters, or to validate numerical

solutions obtained for the same conditions. For 1-D steady-state flow,

transport of a nonreactive solute in a homogeneous soil column with



length L can be described as follows:

ac a2c aCa-D-2 v O<x<L t>O (1)
at 2 8x

8x

where C is the solute concentration expressed in mass per volume of

solution [ML-3], t is time [T], D is the dispersion coefficient

2-1 -1
[L2T - 1 , v is the mean pore water velocity [LT ], and x is the

coordinate in the direction of flow [L]. The dispersion coefficient

quantifies two mechanisms which contribute to solute spreading, viz.,

molecular diffusion and mechanical dispersion. A common expression for

the dispersion coefficient is:

D = D /A + alv (2)

where D is the coefficient of molecular diffusion in a free solution
0

[L2 T-1, X is the tortuosity factor, a is the dispersivity [LI, and Ivi

is the absolute value of v.

Although we assumed nonreactive solute transport, i.e., R=1, it

should be noted that transport of a linearly exchanging solute can be

described by making the substitutions v=v and D=D , where v =v/R and

*

D =D/R.

The choice of the initial and boundary conditions deserves

careful attention. If they do not represent the physical system, the

mathematical solution based on these conditions is of little practical

use. It is assumed that the initial concentration in the column is

constant:

C(x, o0) = C (3)O<x<L
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A great deal of attention has been paid to the proper formulation

of the boundary conditions for the ADE (11, 16, 34). We considered the

following boundary conditions at the inlet:

C1xNO = C0  (first-type) t>O (4-a)

(-D a+ vC)I V0 = VC (third-type) t>O (4-b)

where xO, sometimes denoted as x-O+, implies that x=O is approached

from inside the column. The first-type condition (Eq.(4-a)) suggests

that the concentration at the interface of influent solution (eluent)

is continuous, whereas the third-type condition (Eq.(4-b)) implies that

the flux is continuous at the interface. For solute displacement

experiments, the latter condition is the more realistic one.

In contrast with the first- or concentration-type condition, the

third- or flux-type condition leads to conservation of mass. However,

this condition has a few drawbacks. First, one might question the use

of a dispersion coefficient close to the interface (11). For practical

reasons we will accept its validity. Second, the third-type condition

leads to a discontinuity in solute concentration at the inlet.

Physically, this will not occur at the microscopic level because of

molecular diffusion.

To put these conditions in perspective, it is helpful to

formulate the theoretical boundary condition at the inlet as:

.= Cx,0  t>O (5-a)

00o 8-x + ev C) = C-e D IC

C (x, t) = C °xs--L t>O (5-c)
0 0
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where e is the volumetric water content [L3L-3], L is the arbitrary0

length of a boundary layer outside the soil column [L], and the

subscripts o and 1 refer to the eluent and the soil column,

respectively. All concentrations are resident concentrations (21). The

conditions expressed in Eq. (5) are of little practical use because the

location of L is generally not known. Therefore, Eq. (5-c) is omitted
0

and it. is assumed that the applied solution is well mixed with eluent

concentration C . Note that the concentration of the eluent is now a
0

flux-averaged concentration. Eq. (4-a) and (4-b) then follow from

Eq.(5-a) and (5-b). We prefer the use of Eq.(4-b) because of mass

preservation, accepting the discontinuity in concentration due to the

use of two different types of concentration, i.e., a flux-type for the

eluent and a resident-type for the soil. Solutions of the ADE subject

to Eq. (4-a) can also be useful (34). Therefore both Eq. (4-a) and (4-b)

will be used.

For the outlet, the boundary condition can be formulated as:

aC = 0 t>O (6-a)ax- xtL

where it is assumed that the concentration is macroscopically

continuous over the outlet boundary. This condition is invoked for

diffusive transport in finite media, e.g., mass transport by molecular

diffusion or heat transport with thermal insulation at x=L. In these

cases, no transport will occur across the surface at x=L. Physically,

it is difficult to imagine how dispersive transport will vanish during

transient advective transport across the outlet boundary. Furthermore,

van Genuchten and Parker (3.4) argue that in analogy to the macroscopic
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discontinuity at the inlet, using Eq.(4-b), a similar discontinuity

might occur at the outlet. This invalidates Eq.(6-a). The problem of

formulating a boundary condition at x=L can be avoided by assuming that

the medium is in effect semi-infinite, i.e.:

aC a 0 t>0 (6-b)ax x-)w

Based on the considerations outlined by van Genuchten and Parker (34),

we decided to use this outlet condition for our analytical solutions.

It should be noted that the differences between solutions for finite

and semi-infinite media are usually rather small (33).

The analytical solution of Eq.(1) subject to Eq.(3), (4-a) and

(6-b), i.e., for a semi-infinite medium with a first-type

condition at the inlet, is given by (18):

C(x,t) = C + (C -C -(+c IE + cca-)(7)

whereas for the third-type condition at the inlet (i.e., Eq.(1) subject

to Eq.(3), (4-b) and (6-b)), the solution is given by:

C(x,t) =Ci +(Co-Ci) + 4v t emp- 4Dt +o 2V/-2 LxD

2 vx vx+vtl(
- (i + vx + t) xL 2J (8)

The evaluation of enc with standard tables is rather tedious. The

function is available as a library function for a number of computer

languages. However, it can also be approximated with a series expansion

(1). Van Genuchten and Alves (33) provided approximations for the

function eap(A)e4z:(B) which can be programmed easily.
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Analytical Solution of the ADE for a Nonreactive

Solute in a Two-layer Medium

Analytical solutions can also be developed for transport in media

consisting of homogeneous layers. A variety of solutions does already

exist for heat conduction in composite media (21). Solutions for

transport have been reported by Shamir and Harleman (28), and Al-Niami

and Rushton (3). Shamir and Harleman (28) used a first-type inlet

condition and an outlet condition at infinity for each layer, whereas

Al-Niami and Rushton (3) used a first-type inlet condition and a finite

outlet condition for each layer. Neither solution leads to conservation

of mass. We solved this problem assuming that each layer is in effect

semi-infinite, using a first or a third-type condition at the inlet of

each layer. The solution procedure becomes more tedious with the

increase of the number of layers. Therefore, we only considered a

medium consisting of two homogeneous layers, with an interface located

at x=L . The flow is perpendicular to the interface.1

The solution of the ADE for the first layer was already discussed

in the section on analytical solutions for a homogeneous medium.

Mathematically, the presence of a second layer does not influence the

solution for the first layer because the outlet condition of the first

layer was chosen at infinity. Physically, this seems a reasonable

assumption for steady flow if no extreme differences in dispersion

coefficients between the layers exist, i.e., upstream dispersion is

negligible.

The ADE for the second layer is given by:



9

aC D 2C_ 8C-c D - -C v - L <x<L t>O (9)at 2 2 2ax 1 2
ax

subject to:

C(xO) = C L,<x<L (10-a)i1 2

C xL 1 CIxL t>O (first-type) (10-b)

1 1 ax 1 1IxT"L 2 2 x +2v2CIx",L t (hr-tp)(Oc
1

c = 0 t>O (10-d)
a x x- w

where the subscripts 1 and 2 refer to the first and second layer. We

assumed that the initial concentration, C is equal for both layers.

For a first-type condition, the problem is solved in conjunction with

Eq.(7), whereas Eq.(8) was used to solve the problem for a third-type

condition. From now on it is understood that the term condition refers

to the boundary condition at the inlet of a homogeneous layer or a

nonlayered soil. Using Eq.(11) from Parker and van Genuchten (22), it

can be shown that Eq.(10-b) implies that the volume averaged or

resident concentration is continuous at the interface, while Eq.(10-c)

implies that the flux-averaged concentration is continuous.

The analytical solution of Eq. (9), subject to (10-a), (10-d), and

(10-b) or (10-c), was obtained with Laplace transforms. Appendices A

and B contain the details of the respective solution procedures. For a

first- and third-type condition, the results are, respectively:
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(C -C ) (x-L ) tL-vT vL 1L +vT
C(x,t) = o 1 + eapD1

l/6tD [4DT 1 1
2 0 1 1

1 (x-L-v (t-T))
2

x3/2 4D(-) dr + C (11)
(t-T) 3/2 4D2 (t-T)

v (C -C ) L -vT vL L+vT

C(x,t) = 2 o 4 D I+X

4DD 04D 4D T
2 1 1

22

1 ep (x-L -v (t-T))2

/(t-T) 4D2 ( t - T )

v v (x-L) x-v(t)
eeA -L+v(t-T) -dT + C (12)

S4D 2  4D (t-T)
2 2

The integrals appearing in these solutions were evaluated with

help of the Gauss-Chebyshev formula, discussed in Appendix D.

If we deal with resident-type concentrations, both concentration

and flux are continuous across the interface and the solutions given by

Eq.(11) and (12) will not yield the exact concentration profile. The

transport problem where both the flux and concentration are continuous

resembles the one of heat flow in composite media with no contact

resistance at the interface (8). To solve this problem analytically,

the (simplifying) assumption that the first layer is, in effect,

semi-infinite cannot be used. The exit and inlet condition of

respectively the first and second layer consist of the two interface

conditions (Eq. (10-b) and (10-c)). Appendix C contains the mathematical

statement of the problem as well as the solution for the concentration

of both layers in the Laplace domain.
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Numerical Solution of the ADE for an Exchangeable

Solute in a Homogeneous Medium

To describe transport of a reactive solute we rewrite Eq. (1) as

follows:

8C 8s 82 C ac (13)
e -f+ p T= eD - ev ax

8x
-3

where p is the dry bulk density of the soil [ML ] and S is the

adsorbed concentration of the solute expressed as mass of solute per

-1
mass of dry soil [MM ].

Equation (13) needs to be rewritten to solve for the dependent

variable, C. We assumed that a unique relationship, the exchange

isotherm, exists between the adsorbed ions and those present in the

liquid phase. It should be noted that the relationship between S and C

generally also depends on the total ionic strength and other chemical

species present (23). Such dependency can be included implicitly by

experimentally determining the exchange isotherm under conditions

similar to those for which the ADE needs to be solved. The adsorbed

concentration can be expressed in terms of the liquid concentration, C,

using the chainrule:

8S dS8C (14)
at dC at

It is convenient to introduce the following dimensionless

concentrations to describe transport of nonlinearly exchanging solutes

(17):

X=C/CT ( 15-a)

y=S/S T ..... (15-b)
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where X is the dimensionless concentration of the solute in the liquid

phase, CT is the total amount of solute in the liquid phase per volume

-3
of solution [ML -, Y is the dimensionless concentration of the solute

in the adsorbed phase, and ST is the total amount of solute in the

adsorbed phase per mass of soil1 [MM -1 Substitution of these

dimensionless quantities in Eq.(13) and the use of Eq.(14) yields:

R x D a ax
at ax2 ax

where the dimensionless retardation factor, R, is defined as follows:

R=1 _PS5T dY (
8)C TdX

The familiar form of the ADE is obtained by dividing Eq. (16) by R:

6)

.7)

ax D x v* a(18)
at 2 ax

8x

where v =v/R and D =D/R.

Eq.(16) will be so1ved for-the following initial and

boundary conditions:

X(x,O0) =X (x

(-D av X) vX

7x x490

ax0
8x IxtL=0

The numerical

Crank-Nicolson method.

temporal spacing At,

j=0, 1, .. the central

0<x<L

(first-type)

(third-type)

t>0

t>0

t>0

(19-a)

(19-b)
v

(19-C)

( 19-d)

solution is achieved with the implicit

Using a grid system with spatial spacing Ax and

where x.=(i-1)Ax and t.=jAt (i=1,2,..,n and
1 j

difference approximation of Eq.(16) is*.
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R D2j (xj1 X+X) - D+j+1 jXj ) +
Et i i 2 1+ 1 i i-i l (X1+1X 2X ii-

(X , j+x;+X -X ) 1=2, 3p,4p.,*9.n-1

A schematic of the problem, along with the grid system used for the

numerical approximation, is shown in figure 1.

The approximation of the initial condition is:

x.= x
1

2-4i --n (1-a

The inlet condition (x=0) was approximated by:

xi = X1 0

D j+ lj+l+j .J+
-- x (X -XO +X-X X~ x4Ax 2 0 2 0 2 1 1

vc

0

2

3

n-1

L ___

vce

(first-type)

SvX 0(third-type)

J-1 j J+1

FIG. 1. Schematic of the problem and grid
numerical solution of -transport in a homogeneous
circles refer to grid points with known values and
refer to grid points 'with unknown values.

system f or the
soil. The solid
the open circles

(20)

j>0

j>-0

(21-b)

(2 1-c)

Y1 Ax

At
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where i=O is a fictituous node located at x=-Ax. The central difference

approximation for the outlet condition was written as:

X+1 -X + +X -X = 0 jO0 (21-d)
n+1 n-1 n+1 n-1

where the column exit is located at (n-1)Ax=L and i=n+l represents a

fictituous node located at L+Ax. The value of X depends on the

condition at the inlet of the soil. For the first-type the value is

given by (21-a), whereas for the third-type condition X was

approximated according to Barry et al. (4).

To solve the above set of equations, all unknown variables at

time t need to be expressed in terms of known variables at the

previous time tJ . The variables at the fictituous nodes i=0 and n+1

were expressed in variables at column nodes using the central

difference approximation of the ADE at x=0 and x=L. It is convenient to

define G=D/(2Ax2 ) and H=v/(4Ax) to rewrite Eq.(20) as:

r R'
(-G-H) Xi + i +2G X. + (-G+H) Xj+ 1

11 At i+1
(22)

R .
(G+H) Xj  + [ 2G] xi + (G-H)X

1-1 At 1 l+1

This equation needs to be solved for i=2,...,n-1 along with the two

equations for the inlet and outlet condition. The resulting system of

equations can be written in matrix form:
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b X f

a2  b c . X1 f
2b2 2 22

a3  b3 c3 X3 f
3 3 3 3

an-i bn c" Xnf
.- n-1 n-1 n-1 n-1

0o............a b X fn n n n

j+1

The n by n matrix is a tridiagonal band matrix for which the unknowns

Xj + l  are conveniently solved with the Thomas algorithm (25).

Expressions for the coefficients ai, bi, c.i and f. are provided in

Appendix E.-

Numerical Solution of the ADE for an Exchangeable

Solute in a Layered Medium

In most soils, the physical and chemical properties will not be

constant with depth, e.g., ST might decrease with depth whereas p

generally increases with depth. This section is concerned with abrupt

changes in properties as they occur in naturally layered soils or

artificially constructed media. Each layer is assumed to be

homogeneous, with constant parameter values, and the layers are

separated by a sharp interface. A.schematic of the problem is provided

in figure 2A.

The ADE for transport within the k-th layer is written as:

R -D -v -(24)

k 8t k X2 k 8x

The same initial, inlet, and outlet conditions are used as for the

homogeneous medium in the previous section.,
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INTERFACE CONDITION
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j j+1

fictituous node

b C d

FIG. 2. Schematic of the problem and grid system at -the interface for

the numerical solution of transport iri a layered soil. The solid

circles and triangles refer to grid points with known values and the

open circles and triangles refer to grid points with unknown values.
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The interface condition can be expressed in a similar way as in

the section on the analytical solution of solute transport in a

two-layer medium. For the interface between layer k and k+1, where

spatial node i is located at x=Lk) these conditions are, respectively:

XlxtLk= X x4L (first-type) (25-a)

(-(D) -+(xv) X) =(-(eD) -+(Gv) X) (third-type) (25-b)
ik 8X (V)k x"L k+15X k+1 x4L

k k

In addition to a first- and third-type condition, a second-type

condition was introduced by combining Eq.(25-a) and (25-b):

(GD) x = (D) X (second-type) (25-c)
ODjk jx"Lk k+1 ax xLkk 8xxk

The second-type condition, in conjunction with the ADE on both sides

of the interface, stipulates that both concentration and flux are

continuous at the interface.

The solution of Eq.(24) subject to Eq.(19-a), (19-d), and (1)

Eq.(19-b) and (25-a), (2) Eq.(19-c) and (25-b), or (3) Eq.(19-c) and

(25-c) was accomplished with the Crank-Nicolson method. The space-time

grid system is set up in such a way that a node is located at each

interface. The numerical approximation of the ADE for the nodes inside

each (homogeneous) layer is analogous to that discussed in the previous

section.

For a first-type (interface) condition, Eq.(24) was solved with a

central difference scheme where the concentration at the interface of

layers k and k+1 was solved by using weighted coefficients. The grid

system is shown in figure 2B. For example, for the coefficient a.
1
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(Eq. (23)) we get ai=wkal+wk+l ai+ where the weights wk and wk1

depend on the solute residence time in the space increments on either

side of the interface. The solute flux at the interface in layers k,

J k and k+1, Jk1' at spatial node i and temporal node j, can be

approximated with the following simple explicit expressions:

(eD)
j ev) - k(XJ-x ) (26-a)k k 1 Ax 1 i-1

(OD)k1 0

S= (ev) x _ D) (X -Xj ) (26-b)
k+1 k+1 1 Ax i+1 i

The weight factors for layers k and k+1 (w and w ), were thenk k+1

obtained from the solute fluxes at the interface (x=L), where thek

concentration at the previous time equals X.:1

W 1 (27-a)k 1+(J /J )
k k+1

wk =1-w (27-b)
k+1 k

The solution procedure is similar as outlined for the numerical

solution of solute transport in a homogeneous medium. Regular and

weighted coefficients a, b, c, and f are listed in Appendix E.

For the third-type (interface) condition, two different

approximations for Eq. (25-b) were used to obtain the concentration at
lim Xj+1l=x j+1

the interface of layers k and k+1, Viz. xtLXiit (figure 2C) and
k .+1 j 1j+1 X0+1

lim X.61 =X.J 4  (figure 2D). A notation similar to that for X, and X.
x Lk

was used for the coefficients and concentrations involved in obtaining

these variables. The two approximations of Eq. (25-b) are formulated in

such a way that Eq. (23) could be used to formhlate all equations:
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AX k i+1 -1 i+1 i 1 i

2 D X - X + Xj+1 X (28-a)

- ( )k " -X_1, + X +1 + X (28-b)
S-) xj+~ j+ + x - X + Xj+ + X

AX V k+1 L i+1 1-1 14 , 11J

It should be noted that X and X are concentrations at

fictituous nodes located at Lk+Ax and Lk-Ax, respectively. They are

obtained by using the central difference approximation of Eq. (24) for

layers k and k+1. A system of equations as given by Eq.(23) can be

obtained, except that n+K-1 equations need to be solved, where K is the

total number of layers.

Finally, the second-type interface condition was approximated by:

(eD) - X 1+ X -X9x = (eD) [+- X +xXi - X (29)k1- i i-1 k+1 I+I 1 +i+I 1

where the same grid system was used as for the first-type condition

(figure 2B).

The coefficients of the matrix system are listed in Appendix E.

The subscript i denotes the row number of the matrix. The coefficients

a, b, c, and f depend on location and time, because D, v, e, p, ST , and

dY/dX vary with each layer and dY/dX varies with time.
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Additional Remarks about the Numerical Solution of the ADE

It is well known that the numerical solution of the ADE is

considerably more difficult than the solution of the heat equation

(14). In fact, the numerical solution of the ADE might not be accurate

due to numerical dispersion or because of numerical oscillations. These

numerical oscillations occur especially around the solute front,

whereas numerical dispersion occurs at low values of D when the

advection term is dominant. By adjusting the increments of the grid

system, some improvement can be achieved. Unfortunately, efforts to

reduce numerical dispersion might increase numerical oscillations and

vice versa. Huyakorn and Pinder (14) suggested keeping the Peclet

number (Pe=vAx/D) less than 2 and the Courant number (Cr=vAt/Ax) less

than 1. The latter condition is also referred to as the

Courant-Friedrichs-Lewy stability criterion (24).

Excessive rounding errors, which lead to unstable numerical

solutions, are avoided if the tridiagonal matrix, given by Eq.(23), is

diagonally dominant (7), i.e., if for elements on the diagonal of the

matrix the following holds:

n

Piil Pij1 i=1,2. ,n (30)
j=1
j i

where p.. is an element at row i and column j of the matrix. In our

case, using a Crank-Nicolson scheme, this leads to the requirement that

b.lI IlI+c~I. ro the expressions provided in Appendix E, it i

obvious that no excessiye rounding error will occur in a homogeneous

soil, regardless of the size of Ax and At. However, the values of Ax
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and At are important to obtain an accurate numerical approximation of

the differential equation.

As an illustration, we consider 1-D transport of a nonreactive

solute in a homogeneous soil with a dimensionless initial concentration

X =0.05. The ADE is solved numerically for a first-type or Dirichleti

boundary condition at the inlet for different values of Ax and At. The

soil properties, relevant for solute transport, used in this example

and for all later examples, are listed in Appendix F. These properties

were chosen somewhat arbitrarily. Although the units of the parameters

are listed, any consistent set of units would do. In fact, one might

prefer to state and solve the problem in dimensionless form.

Some results are presented in figure 3A, which shows numerical

solutions employing three different space increments (0.05, 0.5, and

2.5 cm) and a constant time step (0.005 d), as well as the analytical

solution (solid line). The three solutions are very similar for the

selected values of D and v. As expected, some deviations from the

analytical solution began to occur for Ax=2.5 when Pe=2.5 exceeded the

recommended maximum of 2. Figure 3B contains results for various values

of At and a constant Ax of 0.5 cm. The Courant condition is satisfied

if At<0.01 d. However, the results indicate that a smaller At is

desirable; the numerical and the analytical solutions are almost

identical when At:-0.001. Some deviations between analytical and

numerical solutions occur at the outlet (x=12 cm), because of the use

of a semi-infinite versus a finite length (Eq. (6-b) and Eq. (19-d),

respectively). It should be noted that the Crank-Nicolson method is a



22

0 2 4 6 8 0 12 14

x [cm]
FIG.3A. The influence of the space step, Ax, on the numerical solution

of the ADE. The solid lines are based on the analytical solution.

x [cm]

FIG.3B. The influence of the time step, At, on the numerical solution

of the ADE. The solid lines are based on the analytical solution.
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second-order method, which approximates the derivative of a function f

according to:

f(x0+h)-f(x0-h) h2 (3)f(x0 2h f (3)() e [xo-hx0+h] (31)f(Xo) 2h 6 6

(3)
where f is the third derivative of f. The last term of Eq.(31)

represents the error term associated with this approximation. A higher

order expansion leads to a reduction of the error.

Application of a higher order expansion for the time derivative

might partly correct the problem of numerical dispersion (32). A simple

example of reducing numerical dispersion by using a weighted expression

for the time derivative was provided by Stone and Brian (29):

xj+1-xj j+1-xj j+1 j
8X _ 1 i+1 i+1 2 1 1 i-1 i-1(32)
at 6 t 3 t 6 At

The effect of numerical dispersion is demonstrated by assuming

zero dispersion (figure 4). The results were obtained by using either

ax
Eq. (22) or a variation of Eq.(22) by substituting Eq. (32) for thea

term. The exact solution of the ADE resembles a step front (D=0 and

R=1). Both numerical solutions compare poorly with the actual solute

front, although the use of Eq.(32) leads to a somewhat steeper front.

Numerous other techniques have been used to deal with this phenomenon

(cf. 2).
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+
0 + Eq. (22)

o Eq. (32)

-€-- -6 - -

+ o

t = 0.1 d

+
0

0 2 4 6 8 10 12 14

x [cm]

FIG. 4. Numerical solution of the ADE with zero dispersion using two
different approximations for ax/at as presented in Eq.(22) and (32).
The solid line represents the theoretical step front.

Besides comparison with analytical solutions, the accuracy of the

numerical solution can also be evaluated with the help of a mass

balance. We will do this by comparing the net influx of solute, denoted

as FLUX [MI, with the amount of solute which has accumulated in the

column according to the numerical solution, denoted as ACC [MI.

The net amount of solute which enters a hypothetical soil column

during steady flow in a time interval At=tj+ -t j , is given by the

following flux term:
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tj+
1

FLUX 1 = veAC X(xt) X(xt)xL dt (33)

J

where A is the area of the column perpendicular to the direction of

flow [L2]. The net amount of solute which has accumulated in the column

during this period of time is given by:

.L

ACCj+1=A f CT X(xtj+l)-X(x,tj) +pST Y(x,tj+l)-Y(x,tJ) dx (34)

0

where L is the length of the column in the direction of flow [L], and

X(x,t.) and Y(x,t.) denote the dimensionless solute concentrations in
J J

liquid and adsorbed phase, respectively. X(x,t.) can be determinedJ

mathematically or experimentally. Because of the continuity principle,

the net accumulation should be equal to the net influx. This provided a

useful tool to check the accuracy of the numerically determined

X(x.,t j+).
1 j+1

Denoting the solute concentration of the eluent solution as Xin,

Eq.(33) was approximated as:

FLUX. AvC (XI - (X+XJ+1)] At (35-a)
j+1 T in 2 n n

X 0 < t < t
X. = o o (35-b)
in 0  elsewhere

where t is finite for pulse displacement and infinite for step
0

displacement. The integration to obtain the accumulation term is

performed by using the trapezoidal rule, which is convenient to use for

transport in layered media.
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Two mass balance equations were used, viz. a relative mass

balance (RMB) over the time interval [t ,tj I and an overall relativej' J+1

mass balance (ORMB) over the interval [0, t j+]. The error criterionj+1

based on the first balance is defined as:

=4FLX{j1I/c .+ " 100% (6

RMBj+1 FLUX j+1-ACC j+/ACCj+ 100% (36)

To determine the mass balance over the whole time period, t j+1, the

amount of solute present at t=0 is subtracted from the amount present

at t j+ to yield the overall term SUMACC +. The total net supply of
j+1 ~J+1

solute to the column, SUMFLU+. ,and the overall mass balance are
j+1

respectively defined as:

j+1

SUMFLUj+ = E FLUX (37-a)
j+1 J

J=1

and:

ORMBj+. = SUMFLUj+ -SUMACC j+I/SUMACCj+ *100% (37-b)
j+1VSMF j+1 j+1 Ij+1f

As stated before, the accuracy of the numerical solution depends

on the size of the space and time increments, but also on the number of

calculations (rounding error). The question then arises, concerning

what the appropriate sizes of Ax and At should be to obtain an accurate

solution using a minimum number of calculations.

The value for At during the calculations was optimized with the

help of the overall relative mass balance criterion. Two bounds on ORMB

were used, namely a lower bound of 0.5% and an upper bound of 3%. The

value of At for the next time t was increased in case ORMB<0.5% and
j+1
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decreased when ORMB>3%. A numerical scheme which adjusts both Ax and At

to solve the 1-D flow problem was reported by Dane and Mathis (12).

At this point we refer to Appendix G, which contains listings of

various WATFIV programs of numerical solutions used in this study. The

programs HOMSOIL and VARTIM calculate solute concentrations in

homogeneous media with a fixed and a variable time step, respectively.

Transport in layered media was solved with the programs LAY1 and LAY3

for a first- and third-type condition, respectively, with a fixed time

step. The program LAY1 was modified to solve the ADE for a second-type

interface condition (i.e., LAY2). The various parameters for each

problem are specified in the declaration section of the program. The

value of the retardation coefficient was determined with the subroutine

EXCHAN and the amount of adsorbed solute with the routine ADSORB.

Subroutine TRIDIA contains the Thomas algorithm to solve the

dimensionless liquid concentrations. For most problems, a fixed time

step was used, and values for ORMB were generally less than 1%,

depending on the type of problem.

RESULTS AND DISCUSSION

The first section of this chapter compares some of the analytical

and numerical solutions for layered with solutions for nonlayered

media. Furthermore, concentration profiles for layered media were

investigated with analytical solutions using a first- or a third-type

condition at the inlet of each layer. In the remaining sections we will

use only a third-type condition at the inlet of the soil and a second-

or third-type condition at the interface of soil layers (Appendix E).
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Some basic effects of nonlinear exchange on solute transport will be

demonstrated for pulse and step input in the second section. The third

section discusses the effect of layers, with different values for their

transport parameters, on the transport of a solute pulse, along with

two different scenarios of reducing contaminant movement in a soil

profile for a step input. Most numerical values of the parameters were

chosen for illustrative purposes. All relevant values are listed in

Appendix F.

Numerical and Analytical Results for Transport

of a Nonreactive Solute

We start by examining the influence of the inlet boundary

condition on the mass balance. Numerical solutions of the ADE for a

first- and a third-type condition, obtained with the program HOMSOIL,

are presented in figure 5A and 5B, respectively. The values for At and

Ax were 0.005 d and 0.5 cm, respectively. These values were also used

for all later calculations, unless specified otherwise. Included in

figure 5A and 5B are values of RMB and ORMB. For a third-type

condition, X(O,t) gradually approaches X (figure 58), whereas for the0

first-type condition, X(O,t) is instantly equal to X (figure 5A). In0

the latter case, too much solute is forced into the column, resulting

in a significant overall mass balance error, particularly at the early

stage. In contrast, the third-type condition preserved mass. The mass

balance criterion to determine the value of a variable At can therefore

not be used for a first-type condition. Using a variable time step for

a third-type condition resulted in a CPU time which was one fifth of
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FIG. SA. Numerical solution
using a first-type condition.

of the ADE for a homogeneous

0 2 4 6 8 10 12 14

x [cm]

FIG.5B. Numerical solution of the ADE for a homogeneous soil using a
third-type condition.

soil
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the CPU time for a fixed time step (0.005 d). The value for ORMB varied

during the calculations, but was well below 1% for both schemes

(HOMSOIL and VARTIM), except during the very early stages of

simulation.

Next, we considered transport in a two-layer medium, with the

interface at x=6 cm. One way of validating the analytical and numerical

solutions for this problem is to use the same parameter values for both

layers and compare the solution to the one for a homogeneous medium.

The analytical solutions according to Eq.(11) and (12) are shown in

figure 6A (first-type condition) and 6B (third-type condition),

respectively, along with the solutions for a homogeneous medium (Eq. (7)

and (8), respectively). Figure 7A, 7B, and 7C show the results obtained

with LAY1, LAY3, and LAY2, respectively, as well as the results

obtained with HOMSOIL (solid lines). The results indicate close

agreement between the solutions for the "homogeneous" and the

"two-layer" media.
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*solution according to Eq.(1
solution according to Eq. (7)

2 4 8 10 12 14

FIG.6A. Validation of
two-layer medium using

x cm]
the analytical solution of
a first-type condition.

the ADE for a

t=0.1 d

layer I
V= 50 cm/d

D= 50 cm2/d

*solution according to Eq. ( 12)
solution according to Eq. (8)

0.2 d

layer 11
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FIG.6B. Validation of the analytical solution of the ADE for a

two-layer medium using a third-type condition.
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FIG.7A. Validation of the numerical solution of
layer medium using a first-type condition.

the ADE for a

14
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FIG.7B. Validation of the numerical solution of the ADE for a two-

layer medium using a third-type condition.

two-
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0 2 4 6 8 10 12 14

x [cm]

FIG.7C. Validation of the numerical solution of the ADE for a two-
layer medium using a third-type condition at the inlet and a
second-type condition at the interface.

Transport during steady flow in a two-layer medium was

2
investigated for a medium with v =25 cm/d, D =12.5 cm /d, and e =0.4

1 1 1

(i.e., the first layer parameter values), and v =100 cm/d, D =100
2 2

cm /d, and e =0.1. Figure 8 shows the numerically calculated
2

concentration profiles for a first-, third-, and second-type condition

at the interface (VWC denotes 0). Because the D value is smaller in the

first layer, the solute front in the first layer is steeper than in the

second layer. The concentration profiles obtained with a second- and a

third-type condition are very similar except at the interface. The use

of a third-type condition results in a discontinuity of the (resident)

concentration, whereas the profile is continuous for a second-type
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f irst type

OAZ

t = 0.3 d

layer 10.2-- V= 25 cm/d
D = 12.5 cm2/d

0.1 VWC= 0.4

layer 11
V= 100 cm/d

D= 100 cm2/d
VWC= 0.1

0 2 4 6 8 10 12 1

x[cm]
FIG.8A. Numerical solution of the ADE for a
v1 <v 2 using a first-type condition.

third type

two-layer medium (D <D,

0.

0 24 6 8 10 12 14

x [cm]

FIG.8B. Numerical solution of the
v 1(v2 ) using a third-type condition.

ADE f or a two-layer medium (D <D
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second type

x

0 2 4 6 8

x [cm]
FIG. 8C. Numerical solution of the ADE for a
v 1<v ) using a third-type condition at the
condition at the interface.

two-layer medium (D1<D2 ,
inlet and a second-type

condition. For a third-type condition, the concentration increased with

position across the interface. Note that in both cases the flux and the

flux-averaged concentration are continuous at the interface. Figure 9

contains the results if the layers are interchanged. The concentration

profiles are now steeper in the second layer, because of the small D-

value compared to the first layer. For a third-type condition, the

(resident) concentration decreased across the interface.
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first type

0 2 4 6 8 10 12 14

x [cm]
FIG.9A. Numerical solution of the ADE for
v >v ) using a first-type condition.

1 2

third type

a two-layer medium (D >D,
. 1 2

x [cm].

FIG.9B. Numerical solution pf the ADE for a two-layer medium (D >D2 ,

v >v ) using a third-type condition.
1 2
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second type

J*0 2 4 6 8 10 12 14.

X [cm]
FIG. 9C. Numerical solution of the ADE for a two-layer medium (D >D
v >v ) using a first-type condition at the inlet ana 2aS2
second-type at the interface.

We investigated the influence of different parameter values

further by using analytical solutions. First we examined the influence

of dispersion, using somewhat artificially large differences in

D-values. In figure 10, the D-value in the first layer is smaller than

in the second layer, whereas in figure 11 the D-values are

interchanged. The error in the mass balance can be evaluated by

comparing the first-type solution (figure iQA and 11A) with the

third-type solution (figure lOB and 1iB). For a layered medium, the

repeated application of the first-type condition leads to an increase

in the mass balance error of the solution compared to a homogeneous

medium (cf. figure 5). For a third-type condition, a discontinuity in
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x [cm]
FIG.10A. Analytical solution of the ADE for a
v =v ) using a first-type condition.

1 2

10 12 14

two-layer medium (D <D
12

0 2 4 6 8 10 12 14
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FIG. lOB..Analytical solution of the ADE for a two-layer medium (D <D

12
v =v ) using a third-type condition.

1 2
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FIG. 11A. Analytical solution of the ADE for a
v =v ) using a first-type condition.

1 2

two-layer medium
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FIG. 11B. Analytical solution of the ADE for a

v =v ) using a third-type condition..
1 2

two-layer medium (D >D1 2

(D >D
1 2

d

14
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concentration can be observed at the interface. This discontinuity is

similar to the one at the inlet where flux-averaged concentrations,

rather than resident concentrations, are continuous. During heat

transport in composite media, a similar discontinuity arises if there

is a contact resistance. Heat flow across the interface is then

described with a 'radiation' boundary condition using a heat transfer

coeffcient.

Next, we investigated the influence of differences in v-values on

the concentration profile for steady-state flow. In figure 12, the

pore-water velocity is smaller in the first than in the second layer.

Figure 13 shows the concentration profiles if the layers are

interchanged. The solute front is steeper in the low velocity layer.

For a third-type condition, the concentration is lower in the low

velocity layer than in the high velocity layer at the interface. The

values of the advective and dispersive fluxes are, respectively, lower

and higher in the low velocity layer than in the high velocity layer

because of the differences in e. We note again that the flux-averaged

concentration is continuous at the interface.

From these examples it can be concluded that the use of a

first-type condition leads to large mass balance errors in layered

media. For a third-type condition, the discontinuity of the resident

concentration at the interface depends both on the differences in v and

D. If these differences are not too large, the analytical solution

using a third-type condition gives a good approximation of the actual

concentration profile. The latter can be obtained by assuming that both

concent rat ion and fl1ux are cont inuous at the i nt erface ( cf.

figures 8B and 8C and figures 9B and 9C).
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FIG. 13A. Analytical solution of the ADE for a
v >v ) using a first-type condition.
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FIG.13B. Analytical solution of the ADE for a two-layer medium (D=D
12

v >v ) using a third-type condition.
1 2



43

The Effect of Nonlinear Exchange on Solute Transport

Reactions between the porous medium and the solute can have a

strong impact on the transport of a solute. The only reaction

considered here was ion exchange in a binary system. However, other

processes or systems could be combined as well with expressions like

Eq.(13).

For the purpose of comparison, we considered first the case of

linearly exchanging solutes. The relevant parameter values and the type

of inlet conditions are given in Appendix F. An arbitrary soil (ST=10

3 3 3
cmol c/kg, p=1.5 g/cm, 8=0.4 cm /cm ) is saturated with a 0.005 M CaBr2

solution which is displaced with a 0.01 M KC1 solution. The K movement,

assuming linear equilibrium exchange between Ca and K, is described

using R=38.5. The Cl displacement can be described using R=1, if

neither anion reacts with the soil. The profiles for Cl and K were

obtained with an adapted version of Eq.(8) by substituting v for v and

D for D and are shown in figure 14A and 14B, respectively. Although

this situation is somewhat idealized, it is clear that the ability of

the soil to adsorb the incoming cation greatly increases its travel

time through the soil.

In many instances the exchange is not governed by a linear but by

a nonlinear exchange isotherm. Therefore, transport of nonlinearly

exchanging solutes will be examined for a binary system. Two cases can

be distinguished, viz. preferential adsorption of the incoming cation

(favorable exchange) or of the resident cation (unfavorable exchange).

The shapes of the respective dimensionless exchange curves are convex
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and concave. A series of simple examples is provided to illustrate how

ion exchange influences the transport of solutes. Although complete

exchange rarely occurs, usually more than two species participate in

the exchange process, and ST and CT are not necessarily constant; the

illustrations are representative of the exchange behavior expected.

A number of authors have discussed nonlinear exchange during

transport. Bolt (5) provided analytical solutions for nonlinear

exchange. Lai and Jurinak (17) obtained numerical solutions using an

explicit finite difference method. Concentration profiles for

unfavorable, linear and favorable exchange are shown in figure 15. The

arbitrary exchange isotherms and initial concentration profiles are

included as well. All parameter values, as well as the

Y(X)-relationships, are given in Appendix F. Because of the choice of

an initial value for X>O, a substantial amount of (adsorbed) solute was

already present at t=O. For the soil with unfavorable exchange, the

adsorbed concentration was less than the solution concentration (figure

15A), for linear exchange the two were equal (figure 15B), and for

favorable exchange the adsorbed concentration was greater than the

solute concentration. It should be noted that Bruggenwert and Kamphorst

(6) provided an extensive survey of exchange data which might serve as

a guideline for many soil systems where solute transport needs to be

modeled. Examining the profile at t=2 d, it can be concluded, as was

shown by Bolt (5) and Valocchi et al. (30), that favorable exchange

(figure 15C) tends to steepen the solute front (counteracts spreading)

and nonfavorable exchange flattens the solute front (enhances
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FIG. 15A. The effect of nonlinear exchange on transport. Numerical
solution of the ADE for unfavorable exchange.
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FIG. 15B.
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The effect of nonlinear exchange on transport. Numerical
of the ADE for linear exchange.
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FIG. 15C. The effect of nonlinear exchange on transport.
solution of the ADE for favorable exchange.
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FIG. 16. The effect of front sharpening on transport. Numerical solution
of the ADE for favorable exchange.
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spreading). The self sharpening effect of favorable exchange becomes

even more apparent for lower values of v and D (figure 16).

Differences in solute spreading caused by the exchange process

are conveniently demonstrated by using a moving coordinate system.

Figure 17 contains profiles shown in figure 15 plotted as a function of

x-v t, where v is the constant (retarded) advection term for a

linearly exchanging solute. The initial concentration profile is given

as a dashed line. The differences in steepness of the front can clearly

be observed. One of the implications is that the complete displacement

of the competing cation is accomplished most easily if the incoming

cation is favorably adsorbed. For a speedy, incomplete displacement of

the resident cation, an unfavorably adsorbed cation is to be preferred.

The effect of nonlinear exchange on transport is further

illustrated using a -solute pulse. Consider solute movement through a

medium with a constant initial- solute concentration (X =0.05). For an

unfavorably exchanging solute (figure 18A), considerable spreading

occurs at the front end of the pulse, whereas steepening takes place at

the tail end of the pulse. The reverse can be obvserved for a favorably

exchanging solute (figure 18C), whereas for a linearly exchanging

solute the pulse remains symmetric (figure 18B).
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FIG.17A. The effect of nonlinear exchange on dispersion: concentration
profiles for various exchange isotherms using a moving coordinate
system after 1 d.

Time = 2 d

* : unfavorable
0.8+ : linear

08o : favorable

0.6

0.4

0.2t=

-10 0 10 20 30

x-v* t [cm]

FIG.17B. The effect of nonlinear exchange on dispersion: concentration
profiles for various exchange isotherms using a moving coordinate
system after 2 d.
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profiles for various exchange isotherms using a moving coordinate
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FIG.17D. The effect of nonlinear exchange on dispersion: concentration

profiles for various exchange isotherms using a moving coordinate

system after 4 d.
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FIG. 18C. Numerical solution of the ADE for a pulse input
during favorable exchange.

The Influence of Soil Layers with Different Transport

Properties on Solute Transport

Transport of solutes can be influenced by having soil layers with

different transport properties. Examination of Eq.(13) shows that the

following mechanisms can alter the transport behavior during steady

one-dimensional flow.

1) Advection

The continuity condition requires that for an incompressible

fluid V*(Ov)=O throughout the medium. At the interface of layers

k and k+1 this leads to (ev) = (ev) . In a medium not

homogeneous with respect to e, the solute will, therefore, travel

at different velocities through the various layers.
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2) Dispersion

Different soils will likely exhibit different mixing behavior. It

was already shown how transport is influenced by soil layers

having different dispersion values. Although the pore-water

velocity varies with each layer, differences in geometry of the

pores and the size distribution and orientation of the soil

particles is likely to have an even larger impact on spreading

(13). This also has implications for transport perpendicular to

the direction of flow.

3) Ion exchange

The exchange properties can be of major importance for the

transport of reactive. solutes. Consequently, differences in

exchange properties will result in differences in travel time for

the solute.

To illustrate the effect of chemical and physical properties

changing from layer to layer, numerical solutions were obtained for

transport in layered media with a second- or third-type condition at

the interface and a third-type condition at the inlet of the column. We

studied transport of a solute pulse in soils with layers that have

different values of D and ST and different exchange isotherms. The

influence of different values of D for a step change was already

illustrated in figure 10 and 11.
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resulting concentration profiles for a homogeneous medium, i.e. , the

bottom layer was assigned the same properties as the top one. The

initial concentration,X is indicated with a dashed line. For a

two-layer medium, the first layer (0<x<10) has the same properties as

the homogeneous medium, while the value for D of the second layer

(10<x<30) was, somewhat arbitrarily, increased ten-fold as compared to

the homogeneous case. The difference in solute spreading between the

two layers (figure 19B) and the discontinuity at the interface as the

front passes are apparent. At t=0.5 d, the peak concentrations occurred

at the same positions in figure 19A and 19B. However, the value of the

peak concentration in figure 19A was almost twice the value in figure

19B. A layer with increased dispersion effectively reduces the maximum

solute concentration without affecting the average solute movement.

A second example illustrates transport through two consecutive

layers with different ST values. Figure 20A demonstrates how the pulse

travels through a homogeneous medium without adsorption capacity (i. e.,

S T=0). Figure 20B and 20C show results for the medium with the second

layer (10<x<30) having the adsorption capacity S =2 cmol1 /kg, for aT c

third- and second-type condition at the interface, respectively. The

movement of the solute is retarded considerably in the second layer.

Also, notice the discontinuity at the interface for a third-type
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FIG.20A. The effect of layers with different exchange capacities on

solute transport. Numerical solution of the ADE for a two-layer medium

using a third-type condition with (ST ) = (ST 2=0 cmol/kg.
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FIG.20B. The effect of layers with different exchange capacities on

solute transport. Numerical solution of the ADE for a two-layer medium

using a third-type condition with (ST )= 0 and (S )=2 cmol/kg.
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FIG.20C. The effect of layers with different exchange capacities on

solute transport. Numerical solution of the ADE for a two-layer medium
using a third-type condition at the inlet and a second-type condition
at the interface with (S = 0 and (ST ) =2 cmol/kg.TiT 2

In conclusion, a layer with increased adsorption capacity effectively

reduces not only the solute movement but also the maximum solute

concentration in the liquid phase. This is attractive to minimize the

effects of solutes which pose a threat to the quality of ground water.

A third example treats transport of a reactive solute in a medium

having layers with different exchange isotherms. Linear exchange

occurred in the first layer, whereas the exchange was either

unfavorable (figure 21A) or favorable (figure 21B) for the incoming

cation in the second layer. The solute distributions were identical in

the first layer. However, in the second layer the incoming front of the
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pulse showed spreading (figure 21A) and steepening (figure 21B),

respectively, for the unfavorable and favorable exchange.

The next two examples were meant to illustrate the effect of a

"barrier" to solute (contaminant) transport. First, consider a sandy

soil which has a low ST and where saturated or nearly saturated flow

conditions prevail. Evidently, any solute will be transported at a

relatively fast pace in such a medium (figure 22A). Movement of the

solute can be slowed by incorporating a layer which reduces the solute

flux via a decrease in the flow term and via an increase in adsorption.

A clay soil generally possesses these characteristics; the hydraulic

conductivity is relatively low during saturated conditions and the

value of ST can be significant. Somewhat arbitrary parameter values,

listed in Appendix F, were chosen based on these considerations. The

effects on the solute concentration profiles of embedding a 2-cm-thick

clay layer, in the otherwise homogeneous profile, are shown for a

third-type condition (figure 22B) and a second-type condition (figure

22C) at the interfaces. The presence of the clay layer was assumed to

result in a ten-fold reduction of v (Appendix F). The value of the

dispersion coefficient was calculated according to Eq.(2), using D /A=2' 0

cm 2/d, while a was assumed equal to 0.5 cm for the sand and 2 cm for

the clay.

It can be observed in figure 22B that the concentration in the

clay layer was considerably lower than in the sand at either interface.

This was caused by the use of two different expressions for the ADE

* *
at the interface (i.e., with different values for D and v )
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Physically, the concentration in the liquid phase should be continuous

at the interface. The use of a second-type condition is, therefore,

preferred, although the profiles in figure 22B and 22C were very

similar in the clay layer. To investigate the effectiveness of the

added adsorption capacity (the clay layer), the locations of the front

were also determined for zero dispersion by using the appropriate

retarded velocities in each layer. The locations of this

"Izero-dispersion" front are symbolized with the numerals 1 to 5 Cat

c/c =0.5) for the various times listed in figure 22B. The solute moved
0o

slower through the sand when no dispersion occurred. Becaus e of

dispersion, the adsorption capacity of the clay layer was not fully

utilized. It is clear that the magnitude of the dispersion coefficient

needs to be known to accurately predict solute movement under these

conditions.

Under some circumstances, it can be anticipated that "wet"

conditions rarely exist. Solute transport can then be slowed by

including a coarse textured layer in the porous medium. Winograd (35)

discussed the dry site disposal of waste. Concentration profiles in a

homogeneous clay (figure 23A) were compared with those in a

clay-sand-clay. system for a third- and second-type condition (figure

23B and 23C, respectively) under unsaturated soil water conditions. The

inclusion of the sand layer was assumed to result in a ten-fold
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of the water. Because of the lower value of the Peclet number for the

3-layer system, considerable time was needed for the inlet

concentration to become equal to the eluent concentration. Notice that

the discontinuity at the interface behaved in the opposite manner as

for the clay layer in the previous example.

SUMMARY AND CONCLUSIONS

Analytical solutions of the 1-D ADE, subject to a first- or a

third-type inlet condition, were obtained to describe transport in a

two-layer medium. The 1-D ADE was solved numerically to describe

transport of linearly and nonlinearly exchanging solutes in layered

and nonlayered soils with the finite difference method. The accuracy

of the numerical solutions was checked for a number of situations where

analytical solutions were available or could be derived. Both numerical

and analytical solutions were used to study transport in layered soils.

The solution of the ADE subject to a concentration- or first-type

condition at the interface leads to substantial mass balance error.

These errors are avoided by using a flux- or third-type condition or a

combined concentration/flux- or second-type condition. For a third-type

condition, the resident concentration is not continuous at the

interface. This is in contrast to the resident concentration obtained

with a second-type solution. However, the flux-averaged concentration

is continuous at the interface in both cases.

Ion exchange and stratification appeared to have major impacts

on the movement of solutes in soils. The choice of cations in the

eluent solution is important when the resident cation needs to be
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displaced. For complete displacement of the resident solute, an eluent

cation which is favorably exchanged with the resident cation is to be

preferred. In other instances, one might be interested in a relatively

fast displacement of only part of the resident solute and an

unfavorably exchanging solute should be applied. Spreading phenomena

are then advantageous. The examples which were presented offer some

qualitative insight in what might be expected. It was shown that

nonlinear exchange can become an important factor for reactive solute

transport, which implies that the description of the exchange reaction,

over the total concentration range, deserves careful attention. It was

also found that the dispersive flux can become quite important at lower

pore water velocities. These findings stress the importance of

obtaining a good knowledge of the values of physical and chemical

parameters.

Although the flow and transport conditions were relatively

simple, the developed computer programs can easily be modified to

account for different exchange curves, varying CT and ST , multi species

exchange, sink/source terms, etc. Nonsteady flow conditions can also be

included by solving the flow equation along with the ADE.
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APPENDIX A: Analytical Solution of the ADE for the Second Layer of

a Porous Medium Using a First-type Condition

The solution of the ADE for the first layer was given by

Eq.(7). We will derive more general solutions by considering pulse

displacement, and different initial concentrations for both layers. For

the second layer, the problem can be formulated as follows:

ac a2c ac
R -= D - - v L <x<L t>0 (Al)

2 8t 2 x2 2 X 1 2
8x

C(x,0) = g L <x<L (A2a)
2 1 2

C(x,t)IxL = C(x,t)IxL t>0 (A2b)
1 1

BC = 0 t>O (A2c)
8x x w

where the subscripts 1 and 2 denote the first and second layer,

respectively, and g2 is the prescribed initial concentration for the

second layer. An illustration of the problem for K layers was given in

figure 2.

Solution of (Al), subject to (A2), is achieved with the help of

Laplace transforms. The Laplace transform of C(x,t) with respect to t,

is defined as:

2 [C(x,t)] = C(x,t) exp(-st) dt = C(x,s) (A3)

J0

which eliminates the dependency of C on time. By applying the Laplace

transform to (Al) and (A2), we obtain:

2- v - sR gR
dC 2d d_ 2- 2 2=

_ + - 0 (A4)
2 D dx D D

dx 2 2 2

C(L ,s) = F-ec(-tos) - exp (iL ) + -- (A5a)
1 [ O S0 1 1 S
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dC = 0 (A5b)
dx x-)w

1 v 2 sR
where X = 1 and C is the prescribed eluent

1 2D 2D + D o
1 1 1

concentration (cf. Eq.(5a)). A general solution of (A4) is:

+ g2C(x,s) = a exp(XA x)+ 9 exp(Xx) + - (A6)
2 2 s

v v 2 sR
+ 2 I2 1 2

where = 2 --2 + 2 and a and are coefficients to be
2 2D 2D D

2 2 2

determined by the boundary conditions. By using the outlet condition

(A5b), it follows that a=0. For convenience, the superscript of X will
2

be dropped. Application of the inlet condition (ASa) results in:

S= [3i-ep(-tos)-!expl(XL -A L ) + 12]ex(-L) (A7)

Substitution of (A7) in (A6) leads to the following solution for

C(x,s):

-g 1 C
C(x,s) s = O 3p 1 2( L+1 2 S) ezxp( L +X 2 -ts) +

1 2 21 1 2

( 2 ) 1 + C2 + C3 + C4 (A8)

where g=x-L . By inverting the various terms of Eq.(A8), we can obtain

the desired solution for C(x,t). It is convenient to adopt the

following notation:

1 v 1  1 19a)

alv/4R D (A9c)

k = /RD (A9d)
2 2 2
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This allows us to write the inverse of C as:

C1 (x,t) = C ep(a ak -k a+s + a 2k -k 2  +S ) =

0 1 1 2 2
(Co-gl) erp(al k1 +a2k2) g*h (Al0)

where C depends on x because of k2 . The convolution g*h, defined as

t t
g(t)*h(t) = g(t-T)h(T) dr = g(T)h(t-T) dr, (All)

0 0

is used to carry out the inverse Laplace transform according to:

f- [g(s)h(s)] = g(t)*h(t) (A12)

The inverse of g(s) and h(s) can be obtained with the shift property of

the Laplace transform and a table of Laplace transforms (20, 33):

g(t) = exp(-a 2t) -1 12 exp(-k/)]= (A13)

1

k -2a t k +2a t.
1 1 )

2 12 22

k k2+4a2 t

h(x,t) = exp(-a 2t) -1 exp(-k 2  s) = 2 exp- 22(A14)
2 2 4t

By applying Eq.(All), the following expression for C is found:

k -2aT k+2a T
C 1 (x, t) 2 (C-g ) [ec+ emp(2a1k ) e/,c [2 x

2 (k-2a (t-T)) 2

The inverse of C follows from C1 , using the properties of the Laplace

transform for a step function:
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0 O<tstI 0o
C2(xt) = C(A16)

S-g C (x,t-t) t>t
Co g11 o o
0 1

The inverse of C3 is determined according to:

C3(x,t) = 1[91 2]e(a k -k +s) =

k-2a t k2+2a t

2 1 22(gg 2 ){e4 2 + ecrp(2a 2k2 ) 
4 t ]} A7

whereas C4=g2 . The solution of the problem is:

C(x,t) = Cl (x ,t) + C2(x,t) + C3(x,t) + C4  (A18)

For a step-type displacement, i.e., t o, and g=g2=C. we obtain0 1 2 1

C(x,t) = o 1 2 1 1 + ecp(2alk )enc

r -3/2 (k -2a Ct-/) 2
X(t-T)-3 ej- 22t-T) dT + C. (A19)

L-L 4(t-r) 1

The integrals in Eqs.(A15) and (A19) can be evaluated via standard

numerical methods.

The approach outlined in this Appendix is similar to that

originally described by Shamir and Harleman (28), which we were not

aware of at the time we derived (A19). It should be noted that their

Eq.(18) contains a misprint: the term 7DL (t-7) should be read as
2

3
rD (t-) . Shamir and Harleman (28) extended their analysis to a

2

medium of K layers to obtain the concentration at the end of the K-th

layer. However, it can be verified that G(x,s) for an arbitrary
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position in this layer is given by:

C -C K-1iC.

C(x,s) = 0 1 explltexp(A )+ 1 (A20)
S k=1

where t is the thickness of the k-th layer and =x-L . Equation
k K K-1

(A20) can be inverted using the convolution theorem while making use of

the results for layer K-i. It is apparent from (A20) that the order in

which the layers appear does not affect the concentration in the final

layer K, as was already concluded by Shamir and Harleman (28).



APPENDIX B: Analytical solution of the ADE for the Second Layer of a

Porous Medium Using a Third-type Condition

In this Appendix we seek a solution of the ADE for the second

layer, using the principle of continuity of flux rather than

concentration, as in Appendix A. The use of a flux- or third-type

condition is preferred over a first-type condition for volume-averaged

concentrations because it leads to conservation of mass (34). The

solution in the first layer was given by Eq.(8). The problem can be

stated as follows:

ac a 2c ac8C 82C BC
R - D - v - L <x<L t>0 (Bl)

2 8t 2 2 2ax 1 2
8x

C(x,0) = g L <x<L (B2a)
2 1 2

8C 8C
(-0 D 8c +ev C) = (-e D +vC)t> (B2b)

1 18x 11 xL 2 2 8x 2 2 xL t> B2b)1

8C S0 t>0 (B2c)
8x x-)

Again, the method of Laplace transforms is employed to obtain a

solution of (Bl) subject to (B2). Transformation of (Bl) and (B2) leads

to:

2- v - sR gR
2dC 2 + - 0 (B3)

2 D dx D D
dx 2 2 2

dC dC
(-0 D + v C) = (-eD dC + v)(B4a)

1 1 dx 11 xL 22 dx 22 x4L

dC d = 0 (B4b)
dx x-

The Laplace transform of the concentration in the first layer is:

v -g C0  g
C(x,s) = ep(-ts) JcrpXx) + -- (BS)

v-DA - - 1 s1 1 1

where A was defined in Appendix A.
1
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The general solution of (B3) subject to (B4) is:

+ - 2
C(x,s) = a exp(A x) + 3 exp(A x) + -- (B6)

2 2 S

where a, 13, 2 and X2 were defined before. Boundary condition (B4b)

requires that a equals zero. An expression for 1 is found by using the

inlet condition and assuming steady flow (i.e., V.(ve)=O):

V 2 g-g 2 C]

S= v 2  + - 1-eC(-tos)exp(AL ) exp(-A L) (B7)
v -D X s so0 1 1 2 12 2 2W

Substitution of Eq.(B7) into Eq.(B6) yields the solution of the

ordinary differential equation (B3). Using the notation according to

Eq.(A9) we obtain:

2 2 2C" 9s2)-- -- --

x exp(a -k -k a +s) + 2 = C (x,t) + C2(x t) + C3(xt) + C4  (BS)
2 2 2 S 1 2' 3' 4

To obtain C(x,t) we proceed by taking the inverse in a similar

manner as in Appendix A.

1 2 1 1 2 2

sa + /a +s

The inverse part of C is determined by using the expression for the

Laplace transform of the convolution of two functions g(t) and h(t),

for completeness, we also include the expressions for g(s) and h(s):

gs) = 1esp4 (a+s) (B10)

k -2a t k +2a t
g(t) = e { (-alk1 )ere 1 ]+ e1p ~a k1 )e [ ' (Bi)2 1 11t /
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x, s)=

h(x, t)=

22
a+p a- /s+

2 2

222

(4a t 2+k)k+2a t

L 4t ]- 2 ecp 2 2 )eq{

(B12)

(B13)

After applying Eq. (All) we obtain:

t -2a T k +2aT

C (x,t)=a (C- {e_9[' +eaP2a k)e >21
(B14)

P-12 (k 2-2a 2Ct-z))2  k2 +2a 2(t T-r)
X .6(r(t-') e" [ 2 2 i-a 2 e4p(2a k ) e/,&c[J1l

L 4(t-14 4(t--T)

Using the properties of the Laplace transform:

O<t~st
0

C-g 2, o)
01

(B15)

t>t

c C x, t) =2a 2(g1-g2 ),ehp(a 2k2

- 2

ro/16a t
-(g -g ) -(
21 2 II2

[earpt-k 2  a +s]=

s (a2+ a +s]

,e(k2-2a 2t)
2 ,+ -k2 2a2t-

24tJ +eck 2]+

(l-2a k+4a-k +2a t
2+2a +a 2 t) eocp(2a k2) e 2 2]

4't

The solution of the problem is:

C~x, t)= C C x, t) + c2 (x, t) + c 3Cxt t) + c4

For a step-type displacement, i.e., t --), and g =g =C. we obtain

CB16)

(B17)

(B18)
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-2ak +2aT
C ( x , t ) = a 2 ( C o- C .) 

x 4 q "4 T + a P ( a k e & / 4

x{&ot -1/2e (k42-2 2(t-)) 1 2k+2aa2(t-)

X- 7rJa) xpx 2 exrpa 2 2 LA ~T+
6 4(-T 4 Ct -T)

+ C.
1

(B19)

For the K-th layer, the solution in the Laplace domain is given

by:

v

C(x, S) -

c -C. K- c.
0 x 1 PL xE j exp(X )+ 5

(v K-D KX K) (kl e.

Again, it appears that the order of layers between k=2 and K-1 is

irrelevant for the concentration in the K-th layer (LK- <x<L )

(B17)



APPENDIX C. Analytical Solution of the ADE for a Two-layer Porous

Medium Using a Third-Type Condition at the Inlet and a Combined

First- and Third-type Condition at the Interface

Physically, it is realistic that both concentration and flux are

continuous at the interface. This problem is similar to that of heat

flow in a composite medium where the heat flux across the interface is

continuous and intimate contact between different layers at the

interface, i.e., no thermal resistance, ensures continuity in

temperature (8). The application of continuity in both solute flux and

concentration at the inlet is not feasible, therefore a third-type

condition will be used at the inlet.

In this appendix, we seek a solution for the ADE in a medium

consisting of a finite layer (-L<x<O) and a semi-infinite layer (x>O)

(cf. 8, p.319). In contrast with the two previously investigated

problems, the concentration in the first layer depends on the

properties of the second layer. The problem can be stated as follows:

aC a2C 8C
RD- v -L<x<O t>O (Cla)

i at ax2  iax

22
8C 82C 8c

R 2 D 2 2

R D - -v - x>O t>O (Cib)
2 3t 2 2 2 ax

C (xO) = g -L<x<O (C2a)1

C (x,O) = g2 x>Q (C2b)

8C rv C O<t-<t
(vC -D i) - v f 10 oC c

i i i ax xg-L 'L [ Cc
i 0 t0
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C C t>O (C2d)
i Xto 2 X,

9C 8C
1 2

evC -D -=evC-eD t>0 (C2e)
111-1 8x x 222 22 a X0

ac
2 -=0 t>O (C2f)8x x~oo

The Laplace transforms of (C1) and (C2) are:

dC v dC sR gR
1 1 1 1 11

1 + gO(C3a)
2 D dx D 1 Ddx 1 1 1

dC v dC sR gR
2 2 2 2 22

C + - 0 (C3b)
2 D dx D 2 D

dx 2 2 2

dC C1 O 1P(tS
(vC- D 1 ) -vif S 1-exp(-t s) t>0 (C4a)

1 11 dx x -L 1 s L o

C xt= C 0t>0 (C4b)

dC dC
1 2

8D -x - D -t>0 (C4c)
1 1 dx x 0 2 2 dx x,0

dC
2 =0 t>0 (C4d)

dx x-)

Note that Eq.(C4c) follows from Eq.(C2e) assuming steady flow and

continuity in concentration. The general solution of Eq.(C3) can be

written as:

C (x,s) = a exp(Ax) +t3 eXp(-Xx) exp 2D S+ (C5a)

v 2 x 92
C (x,s) = 7 exp(A2x) + p exp(-X 2x)] exp2D + - (C5b)

2

where a, f3, 7' and ji are coefficients determined by the boundary

dv 2 sR '

conditions and =

Application of Eq. (C4d) gives y=0, whereas the use of CC4b) shows
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that M=a+3. During steady flow, the following relationship between a

and 1 can be established with Eq. (C4c):

av DA +v DA = vD -v D (Ca)

or using q i=(D iAi)/v

a f3 (C6b)
q1+q2

whereas application of Eq. (C4a) yields:

a[-q exp(-AL) + 13+q exp(AXL) = C(-ts) exp (C7)

Explicit expressions for a and f3 can be found by using both

Eq.(C6) and (C7). It is convenient to transform the position coordinate

such that the interface is located at x=O. The resulting equations for

C and C are:
1 2

gl Co -g 1-exp(-t os )

C (x,s) = - +
Ss -q)(q -q 2)exp(-AIL) + (-+q )(ql+q ) exp(X L)

V X vx]}
s (q1-q2)e Xp- + AX(x-L) + (q +q2 )rpX. - X(x-L) (C8)

2q [C 9 -eXP(-t s) ]eXP- g2  2q1

C (xs) =--+x2 s 1-q )(q -q2)exp(-XL) + ( 1+q )(q +q )exp(AXL)

v (x-L) (x-L) (C9)

sexp 2D 2

Inversion as described in Appendix A and B or application of the

inversion theorem or the expansion procedure (8) did not seem feasible.

Concentration profiles were therefore obtained via numerical inversion

of the Laplace transform according to the algorithm by Crump (9). As an

approximate analytical solution, Eq. (B14) can be used.



APPENDIX D. Numerical Integration with the Gauss Chebyshev Formula

Numerical integration can be performed in many ways (7). We

attempted Gaussian quadrature and the Gauss-Chebyshev method. The

latter one gave more accurate results at the end points and was easier

to code. In particular, the flexibility in the number of points is

attractive.

In order to evaluate the integrals appearing in Eq.(11) to (13),

the integration variable T, varying between 0 and t, needs to be

transformed to a variable n varying between -1 and +1. This was

accomplished by the linear transformation = 12T-t)] For a function

f(T) the integration changes as follows:

t +1Jf(z) dr =J2 f( 2 ~t)diq (D1)

0

The Gauss-Chebyshev formula yields (31):

f (=) d 1 a1f n1) + a2f ( 2 ) + ...... + anf(mn) + ET (D2)

where ET is the truncation error, and a and 71 are the coefficients
T

and points, respectively, which are defined for n points as:

= Coa( (2k-l ) i)
k 2n

k=1,2,... ,n (D3)
a =a 2  ak= .. =an =n

In our case, the transformation of variables is straightforward.

Because the denominator does not contain a term V-{ ), both

denominator and numerator of the transformed function are multiplied

with this factor (cf. Appendix G).
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APPENDIX E. Expressions for ai, b., c i , and f. to Solve

the ADE for a Non-layered and a Layered Soil

Non-layered soil

inlet condition (x=O) j>O

c =0 b = 1, f = X first-type
1 1 1 o

S= -2AtG

b = R + 2At(G + 2H(1 + H third-type
1 1 G

f, = (2R-b ) X + 2AtG X + 8AtH(1 + ) X
1 1 1 2 G o

a. =-G - H
1 .

R
b. =2G +
1 t i=2,3,.. ,n-1

c. = -G + H jaO
1

f. = -a.X + (b.-4G) X9 -c X
1 1 i-1 1 1 i i+1

outlet condition (x=L) j>O

a = -1,

R
n

b = 1 +
n 2AtG

f = X + (b -2) Xi
n n-1 n n

initial condition (t=O)

X i=1
X = first-type

SX. i>1
1

24H

= {4H2=  third-type

Note that G=D/(2Ax2 ) and H=v/(4Ax)
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APPENDIX E. Continued

Layered soil

inlet condition (x=O) j>O,k=l

a = c = O, b = i, f = X first-type
1 1 o

al = , = -2AtG

H
b = R + 2At(G + 2H (1 + I)) third-type

f = ( 2 R -b ) +2AtG X + 8AtH (1 + 1) X
1 i1 1 1 1 2 1 G o

1

coefficients for nodes not loacated at the boundaries or interface

a. =-G - H
1 k k

Re j=0, 1,2,....
1k

b. = 2G +
1 k At

k=1,2,....,K

c. = -G + H
1 k k

f. = -a.X + (b .-4G ) X - c.
1 1 1-1 i k 1 1 1+1

interface condition (x=L) j>O, k=1,2,..,K-1
k

a. =-w G -w G -w H-w H
1 k k k+1 k+1 k k k+1 k+1

wR. +w R.
k 1k k+1 1,k+1 + 2wG +2w G

i At k k k+1 k+1 first-type
c. = -w G -w G +wH +w H
1 k k k+l k+1 k k k+l k+1

f. = -a.X _ + (b.+4w G +4w G ) X -c.X
1 1 1 1 k k k+1 k+1 1 1 1+1

2xv 2 (D
k =2Ax k k Ax (Vk+1

ai = -2G1

R
b 1k + 2G + r (H-G )i At k k k k third-type

c. = (k(Gk-Hk)

= k 1-1 At k k k k i+1 k+k 1

+ [k l (Gk-Hk )]Xk+1l k k +1
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APPENDIX E. Continued.

a. = -D
1 k k

b. =e D +e D
1 k k k+1 k+1 second-type

c. =- D
1 k+1 k+1

f. = -a.X. - b.X. -c.X.
1 1 i-1 1 1 1 1+1

a. = - (G +H )
1 k+1 k+1 k+1

R.
b. = 9,k+1 + 2 G + (G +H )

1 At k+1 k+1 k+1 k+1

c. =-2G third-type
1 k+1

f. = [q( (G +H)XL + (1-q) (G +H )lXi +
1 k k+1 k+1lk+1j11 L k k+1 k+1 k+1 1

RJE1 k+1G2  - (G +H )]X + 2G X
At k+1 k+1 k+1 k+1 j 1, k+1 1+1

outlet condition (x=L ) j>0K

a =-1, c = 0
n n

RJ
b =1 + n,
n 2AtG

K
f = Xj  + (bn-2) Xj

n n-i n n

initial condition (t=0) j=0 k=1,2,....,K

0 X0
X= first-type

i X. i>1
1

24H
k Xc xi=1

X.0 = { 24Hk+25 G it y
KOk k third-type

1 S X. i>1

1

2
Note that G =D /(2Ax ) and H =v /(4Ax)

k k k



APPENDIX F. List of Parameter Values Used for Simulations

Fig. k v D 8 p S dY X. t

condition T dX 1 0

cm/d cm2/d g/cm3 cmol /kg d

3a  1 50 50 0.0 0.05 00

3 1 50 50 .0.0 0.05 c

4 1 50 0 0.0 0.05 00
5a  1 50 50 0.0 0.05 00

5b  3 50 50 0.0 0.05 o

6a  1 1 50 50 0.0 0.05 0
2 50 50 0.0 0.05 00

6b 3 1 50 50 0.4 0.0 0.05 0o
2 50 50 0.4 0.0 0.05 0o

7a  1 1 50 50 0.0 0.05 00
2 50 50 0.0 0.05 00

7b  3 1 50 50 0.4 0.0 0.05 00
2 50 50 0.4 0.0 0.05 00

c  1 50 50 0.4 0.0 0.05 00
2 50 50 0.4 0.0 0.05 00

8a 1 1 25 12.5 0.4 0.0 0.05 00
2 100 100 0.1 0.0 0.05 0o

8b  3 1 25 12.5 0.4 0.0 0.05 0o
2 100 100 0.1 0.0 0.05 o

8c  2 1 25 12.5 0.4 0.0 0.05 0o
2 100 100 0.1 0.0 0.05 0

a 1 100 100 0.1 0.0 0.05 00
9 1 2 25 12.5 0.4 0.0 0.05 0o

b 1 100 100 0.1 0.0 0.05 0
2 25 12.5 0.4 0.0 0.05 0

9c  2 1 100 100 0.1 0.0 0.05 0
2 25 12.5 0.4 0.0 0.05 00

a  1 1 10 10 0.0 0.05 C
2 10 5 0.0 0.05 0

b 3 1 10 10 0.4 0.0 0.05 0o
10 3 2 10 5 0.4 0.0 0.05 o
a 1 10 40 0.0 0.05 0

2 10 5 0.0 0.05 0
b 1 10 40 0.4 0.0 0.05 0

3 2 10 5 0.4 0.0 0.05

12 1 20 20 0. 5 0. 0 0.05 ci

2 50 20 0. 2 0. 0 0.05 o
b 1 20 20 0. 5 0. 0 0.05 Co

12 ~ 2 50 20 0. 2 0. 0 0. 05
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APPENDIX F. Continued.

Fig. k v D e p s dY X. t
condition T dX 1 o

cm/d cm /d g/cm cmol /kg

13 a1
2

3b 31
13 2

14a 3

14 3

a15 3

15 3

15 c 3

16 3

17a3

17b3

17 3

18a3
b18 3

18 c 3

19 a 3 1
2

1b 31
19 ~ 2

2

2b 31
20 3 2

a 1
21 3 2

21 b31
2

50 20
20 20
50 20
20 20

50 50

50 50

50 50

50 50

50 50

0.2
0.5
0.2
0.5

0.0
0.0
0.0
0.0

0.0

0.4 1.5 10.0

0.4 1.4 10.0

0.4 1.4 10.0

0.4 1.4 10.0

25 10 0.4 1.4 10.0

50 20

50 20

50 20

50 20

50 20

50 20

50 10
50 10
50 10
50 100
50 20
50 20
50 20
50 20

50 20

50 20

50 20

50 20

0.4 1.4 10.0

0.4 1.4 10.0

0.4 1.4 10.0

0.4 1.4 1.0

0.4 1.4 1.0

0.4 1.4 1.0

0.4 0.0
0.4 0.0
0.4 0.0
0.4 0.0
0.4 0.0
0.4 0.0
0.4 1.4 0.0
0.4 1.4 2.0

0.4 1.4 1.0

0.4 1.4 1.0

0.4 1.4 1.0

0.4 1.4 1.0

0.05 00

0.05 00
0.05 00

0.05 00

0.05 00

1 0.05 C0

3X2  shown C0

1 00

-x s 0
3
1 x-2/3
3

3X2

1 w
1 -2/3
-x n

00

00

3X2  0.05 0.4

1 0.05 0.4
1 -2/3
X- o .o5 0.4

0.05 0.1
0.05 0.1
0.05 0.1
0.05 0.1
0.05 0.2
0.05 0.2

1 0.05 0.2
1 0.05 0.2

1 0.05 0.2

3X2  0.05 0.2

1 0.05 0.2
1 -2/3-X 0.05 0.2

LV Y vv uv v ~ r r
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APPENDIX F. Continued.
dY

Fig. k v D p ST dX X. t
condition

cm/d cm2 /d g/cm3 cmol /kg

1
22a 3 2

3

1b
22 3 2

3

1
2 3 a 3 2

3

b 1
23 3 2

3

100 52 0.4 1.3 1.0
100 52 0.4 1.3 1.0
100 52 0.4 1.3 1.0

10 7 0.4 1.3 1.0
8 18 0.5 1.3 5.0

10 7 0.4 1.3 1.0

10 7 0.2 1.3 1.0
10 7 0.2 1.3 1.0
10 7 0.2 1.3 1.0

1 4 0.2 1.3 1.0
0.5 2.5 0.4 1.3 0.0
1 4 0.2 1.3 1.0

0.05 c
0.05 o
0.05 00

0.05 00
0.05 00
0.05 o00

0.05 00

0.05 00
0.05 00

0.05 00
0.05 00

0.05 00

d

// In 11 17 1



APPENDIX G. Listing of Computer Programs

This Appendix contains the various WATFIV programs for the

IBM-mainframe used in this study. The values of the input parameters

are entered as program parameters in the declaration section, which is

followed by a brief explanation of these variables. Initial

concentration profiles can be entered as input variables (cf. HOMSOIL).

Any set of consisitent units can be used. The output format is

specified in the program. The structure is similar for all programs and

should be self explanatory.

FISEC : Analytical solution of the ADE for the second layer of

a two-layer medium using a first-type condition

THSEC : Analytical solution of the ADE for the second layer of

a two-layer medium using a third-type condition

HOMSOIL : Numerical solution of the ADE for a homogeneous medium

using a first- or a third-type condition

VARTIM Numerical solution of the ADE for a homogeneous medium

using a first- or a third-type condition with a

variable time step

LAY1 : Numerical solution of the ADE for a layered medium using

a first-type condition

LAY3 Numerical solution of the ADE for a layered medium using

a third-type condition
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Listing of FISEC

//FIG1OA JOB (AYL59FL,124),'FEIKE LEIJ',MSGCLASS=P,

1/ NOTIFY=AYL59FL,MSGLEVEL=(1,1),REGION1O24KTIME(1,59)
/*ROUTE PRINT RMT4
/*JOBPARM LINES=10
//STEP1 EXEC WATFIV
//WATFIV.SYSIN DD *
/JOB FEIKE,TIME=(5) ,PAGES=60
C

INTEGER NUM/7/,I,J,UP/100/
REAL R/1.O/,POS(7)4VELO1/1O./,VELO2/1O./,DIFO1/100./,DIFO2/1O./
REAL A1,A2,C(30) ,F,H,M,N,K1,K2(25) ,DELPOS/1./,DUM
REAL ROOT(100),COEF,SUM,CON(12),DIMCON(12),X(12)
REAL NO/O.O/,CIN/.OOO5/,CZERO/.O1/,FACT,TEL1(100),TEL2(100)
REAL NOEM2(100),NOEM3(100),LEN1/6./,REPOS(25)
REAL EXF,FACT4(100),B(100),D(100),E(100),G(100),NOEM1(100)
REAL BOUND/170./,LOEF,DELTIM/O.1/,TIMMAX/4.O/

C
VARIABLES TO

NUM
VEL01
VEL02
DIF01
DIF02
CON
DIMCON
x
DELPOS
CIN
CZERO
LENi
DELTIM
.TIMMAX

BE SPECIFIED
NUMBER OF POSITIONS IN SECOND LAYER
PORE WATER VELOCITY IN FIRST LAYER
PORE WATER VELOCITY IN SECOND LAYER
DISPERSION COEFFICIENT IN FIRST LAYER
DISPERSION COEFFICIENT IN SECOND LAYER
CONCENTRATION
(C CI)/(COCI)
C/CO
SPACE INCREMENT FOR ANALYTICAL SOLUTION
INITIAL CONCENTRATION
ELUENT CONCENTRATION
POSTION OF INTERFACE
TIME INCREMENT FOR ANALYTICAL SOLUTION
MAXIMUM TIME FOR ANALYTICAL SOLUTION

L/T
L/T
L2/T
L2/T

M/L3

L
M/L3
M/ L3

L
T
T

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C
C
c
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PRINT,'* F I S E C
PRINT, '* A*I

PRINT,'* ANALYTICAL SOLUTION OF THE ADVECTION-DISPERSION '

PRINTI* EQUATION FOR 1-D TRANSPORT IN THE 2-ND LAYER OF
PRINT,'* A SEMI-INFINITE POROUS MEDIUM *

PRINT,'* 1-ST TYPE BOUNDARY CONDITION
PRINT,'* *

INITIALIZE SOME BASIC VARIABLES

A1=VELO1/(2.O*SQRT(DIFO1))
A2=VELO2/ (2. O*SQRT (DIFo2))
K1=LEN1/(SQRT(DIFO1))
POS(1 )=LEN1
REPOS (1) =0 .0
K2(1)=0.O



DO 10 1=2,NUM
POS(I)=POS(I-1)+DELPOS
REPOS(I)=P05(I)-LEN1
K2(I)=REPOS(I)/(SQRT(DIFO2)).

10 CONTINUE
C

PRINT,'
PRINT,' POSITIONS'
PRINT 113,'TIME',' ',(POS(I),I1,NUM)

113 FORMAt(l' ',A7,.A15,7F7.3)
PRINT,'

C
C INITIALIZE ROOTS AND COEFFICIENTS FOR GAUSS-CHEBYSHEV
C

DO 23 J=1,UP
DUM=((2*J-1)*1.57O96327)/FLOAT(UP)
ROOT(J)=C05(DUM)

23 CONTINUE
C

COEF=3. 141592654/FLOAT(UP)
C

TIME=DELTIM
WHILE(TIME.LE.TIMMAX) DO

C
C INITIALIZE VARIABLES FOR COMPLEMENTARY ERROR AND EXPONENTIAL FUNCTION4S

.C
DO 20 J=1,UP

TEL1(J)=A1*TIME*(ROOT(J)+1 .0)
TEL2(J)=A2*TIME*(1 .O-ROOT(J))
NOEMi (J)=2. O*TIME*(ROOT(J)+1)
NOEM2(J)=0.25*NOEM1(J)*S.QRT(O.25*NOEM1(J))
NOEM3(J)=SQRT(2.*TIME*(1.-ROOT(J)))
FACT4(J)=SQRT(1 .O-ROOT(J)*ROOT(J))

20 CONTINUE
C
C INITIALIZE POSITION DEPENDENT VARIABLES
C

DO 99 1=1,NUM
C.(I)-2*A2*K2(I)
DO 30 J1,fUP

B(J)=-((K1-TEL1(J) )**2)/NOEM1(J)
D(J)=(K2(I) -TEL2(J) )/NOEM3(J)
E(J)1 .O/NOEM2(J)
G(J)=(K2(I)+TEL2(J) )/NOEM3(J)
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DO 40 J=1,UP
IF (B(J).LE.-BOUND) THEN

LOEFO0.O
ELSE

LOEF=EXP(B(J))
ENDIF

SUM=SUM+COEF*FACT4(J)*E(J)*LOEF*(EXF(NO,,D(J))+EXF(C(I),,G(J)))
40 CONTINUE

C
CON ( I )SUM*FACT+CIN
DIMCON(I)=(CON(I)-CIN)/(CZE'RO-CIN)
X(I)=CON(I)/CZERO

99 CONTINUE
C

PRINT 114,TIME, 'C-CI/CO-CI' ,(DIMCON(I),11I,NUM)
114 FORMAT(' 'IF7.3,AI17F7.3)

C
PRINT 113,' ','C/CO',(X(I),I=1,NUM)

C
PRINT,'1

C
TIME=TIME+DELTIM
ENDWHILE

C
STOP
END

C
REAL FUNCTION EXF(Q,Z)

C
REAL Q,Z,T,STUP1,STUP2,XX,YY,QQ

C
EXFO0.O
STUP1=ABS (Q)

C
IF (STUP1.GT.-170 .AND. Z.LE.O.O) GO TO 40
IF(Z.NE.O.) GO TO 31
EXF=EXP (Q)
GO TO 40

31 QQ=Q-Z*Z
STUP2-ABS (QQ)
IF((STUP2.GT.170) .AND. (Z.GT..0O)) GO TO 40
IF(QQ.LT.-170) GO TO 34
XX=ABS (Z)
IF (XX .GT. 3.0) GO TO 32
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C
34 IF(Z.LT.O.O)THEN

EXF2. *EXP(Q)-EXF
ENDIF

C
40 CONTINUE

C
RETURN
END

/GO
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Listing of THSEC

//FIG1OB JOB (AYL59FL,124),'FEIKE LEIJ',MSGCLASS=P,
// NOTIFY=AYL59FL,MSGLEVEL=(1,1),REGION=1024K,TIME=(0,59)
/*ROUTE PRINT RMT4
/*JOBPARM LINES=10
//STEP1 EXEC WATFIV
//WATFIV.SYSIN DD *

/JOB FEIKE,TIME=(05),PAGES=60
C

INTEGER NUM/7/,I,J,UP/100/
REAL /1./,POS(7),VEL01/1O./,VELO2/1O./,DIFO1/100./,DIFO2/10./
REAL TEL2(100),A1,A2,C,G(100),F(25),H,M,N,K1,K2(25),DELPOS/1.O/
REAL ROOT(100),COEF,TERM1,TERM2,CON(25),DIMCON(25),X(25)
REAL DUMMY,CIN/.0005/,CZERO/.01/,FACT1,FACT2,TEL1(100)
REAL NO/0.0/,NOEM1(100),NOEM2(100),LEN1/6./,REPOS(25),TIME
REAL DUM,LOEF,CHECK,EXFFACT3(100),DUMMY2,B(100),D(100),E(100)
REAL NOEM3(100),NOEM4(100),BOUND/150./,DELTIM/.1/,TIMMAX/4.0/
REAL GG(100),VMC1/0.5/,VMC2/0.5/

C
VARIABLES TO

NUM'
VELO1 :
VELO2
DIFO1
DIFO2
CIN
CZERO
LEN1
DELTIM
DELPOS
TIMMAX
VMC1
VMC2

BE SPECIFIED
NUMBER OF POINTS IN SECOND LAYER
PORE WATER VELOCITY IN FIRST LAYER
PORE WATER VELOCITY IN SECOND LAYER
DISPERSION COEFFICIENT IN FIRST LAYER
DISPERSION COEFFICIENT IN SECOND LAYER
INITIAL CONCENTRATION
ELUENT CONCENTRATION
POSITION OFINTERFACE
TIME STEP FOR ANALYTICAL SOLUTION
SPACE STEP FOR ANALYTICAL SOLUTION
MAXIMUM TIME FOR ANALYTICAL SOLUTION
VOLUMETRIC WATER CONTENT IN FIRST LAYER
VOLUMETRIC WATER CONTENT IN SECOND LAYER

L/T
L/T
L2/T
L2/T
M/L3
M/L3
L
T
L
T
L3/L3
L3/L3

PRINT,'***************************************************

PRINT,'* T H S E C
PRINT,'*

PRINT,'* ANALYTICAL SOLUTION OF THE ADVECTION-DISPERSION

PRINT,'* EQUATION FOR 1-D TRANSPORT IN THE 2-ND LAYER OF

PRINT,'* A SEMI-INFINITE POROUS MEDIUM
PRINT,'* 3-RD TYPE BOUNDARY CONDITION

PRINT,'*

TIME=DELTIM

INITIALIZE SOME BASIC VARIABLES

Al=VEL01/(2.0*SQRT(DIFO1))
A2=VELO2/(2.0*SQRT(DIFO2))
Kl=LEN1/(SQRT(DIFO1))
POS(1)=LEN1
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C
C
C
C
C
C
C
C
C
C
C
C
C
C

c

C
C
C



REPOS (1)=0 .0
K2(1)0 .0
DO 10 12,1NUM

Pos(I)=POS(I-1)+DELPOS
REPOS(I)=POS(I)-LEN1
K2(I)=REPOS(I)/(SQRT(DIFO2))

10 CONTINUE
C

PRINT,,'DEPTH OF FIRST LAYER ',LEN1

PRINT,'DEPTH OF SECOND LAYER ',REPOS(NUM)

C
PRINT,'
PRINT,' POSITIONS.'

PRINT 113,'TIME',' ',(POS(I),I=1,NUM)

113 FORMAT(' ',A7,A15,7F7.3)
PRINT,'

C
C INITIALIZE ROOTS AND COEFFICIENTS GAUSS-CHEBYSHEV

C
DO 23 J1,jUP

DUM=((2*J-1)*1.57O96327)/FLOAT(UP)
ROOT(J)=C05(DUM)

23 CONTINUE
C

COEF=3. 141592654/FLOAT(UP)
C

WHILE (TIME .LE .TIMMAX) DO

C
C INITIALIZE VARIABLES FOR COMPLEMENTARY ERROR AND EXPONENTIAL FUNCTIONS

C
DO 20 J=1,UP

TELl (J)=A1*TIME*(ROOT(J)+1)
TEL2(J)=A2*TIME*(1 .O-ROOT(J))
NOEM1(J)=SQRT(2.O*TIME*(ROOT(J)+1))
NOEM2(J)=2.*TIME*(1.-ROOT(J))
NOEM3(J)=SQRT(NOEM2(J))
DUMMYO .785398163*NOEM2(J)
NOEM4(J)=SQRT(DUMMY)
FACT3(J)=SQRT(1.O-ROOT(J)*ROOT(J))

20 CONTINUE
C
C INITIALIZE POSITION DEPENDENT VARIABLES

C
DO 99 1=1,NUM
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G(J)=-( (K2(I)-TEL2(J) )**2)/NOEM2(J)
30 CONTINUE

C
FACT2=(CIN*(VELO1*(VMC1,/VMC2)-VELO2))/(SQRT(DIFO2))
FACT1=O.2S*VMC1*VELO1*(CZERO-CIN)*TIME*COEF/(-VMC2*SQRT(DIFO2))

C
H=-((K2(I)-2.O*A2*TIME)**2)/(4.O*TIME)
MO.,5*(K2(I)-2.O*A2*TIME)/(SQRT(TIME)).
N=0.5*(K2(I)+2.O*A2*TIME)/(SQRT(TIME))

C
C EVALUATE THE INTEGRAL WITH GAUSS-CHEBYSHEV
C

TERM1O0.O
DO 40 J=1,UP

IF(G(J).LT.-BOUND)THEN
LOEF=0.0

ELSE
LOEF=EXP(G(J))

ENDIF
C

TERM1=TERM1+FACT3 (J)* (EXF (NO ,B (J) )+EXF (C, D(J) )) *

$ (E(J)*LOEF-A2*EXF(F(I),GG(J)))
40 CONTINUE

C
TERM1=FACT1t*TERM1

C
C EVALUATE SECOND PART OF THE ANALYTICAL SOLUTION
C

DUMMY=TIME/3.141592654
D UMMY=S QRT (D UMMY)
IF(H.LE. -BOUND) THEN

LOEF=O.
ELSE

LOEF=EXP (H.)
ENDIF

C
TERM2=FACT2*(DUMMY*LOEF+( (O.25AEXF(NO,M) )/A2)

$ -((O.25*(1.+F(I)+4.*A2*A2*TIME)*EXF(F(I) ,N))/A2))

C
CON (I )=TERM1+TERM2+CIN
DIMCON(I)=(CON(I)-CIN)/(CZERO-CIN)
X(I)=CON(I )/CZERO

99 CONTINUE
C
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STOP
END

c
REAL FUNCTION EXF(QZ)

c
REAL LOEF,Q,Z,T,STUP1ISTUP2,XX,YY,QQ,BOUND2/120./

c
EXFO0.O

STUP1=ABS (Q)
IF((STUP1.GT.BOUND2) .AND. (Z.LE..)) GO TO 40
IF(Z.NE.O.O) GO TO 31
EXF=EXP(Q)
GO TO 40

31 QQ=Q-Z*Z
STUP2=ABS (QQ)
IF((STUP2.GT.BOUND2) .AND. (Z.GT.0.)) GO TO 40
IF(QQ.LT.-BOUND2) GO TO 34
XX=ABS (Z)
IF(XX.GT.3.) GO TO 32

T=101(1 .0+0.3275911*XX)
YY=T*( .2548296-T*( .2844967-T*(1 .421414-

$ T*(1.453152-1.0614O5*T))))
GO TO 33

32 YY=O.56418958/(XX+.5/(XX+.I1(XX+1.5/(XX+2./
$ (XX+2.5/(XX+1.))))))

33 EXF=YY*EXP(QQ)
C

34 IF(Z.LT.0.0) THEN
EXF=2.*EXP(Q)-EXF

ENDIF
c

40 CONTINUE
C

RETURN
END

/GO
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Listing of HOMSOIL

//FIG22 JOB (AYLS9FL,124),'FEIKE LEIJ',MSGCLASS=P,
// NOTIFY=AYL59FL,MSGLEVEL=(1,1),REGION=1024K,TIME(1,59)
/*ROUTE PRINT RMT4
/*JOBPARM LINES=10
//STEP1 EXEC WATFIV
//WATFIV.SYSIN DD *
/JOB FEIKE,TIME=(05),PAGES=60
C
C VARIABLE DECLARATION

INTEGER I,J,K,SIZE/25/,DUMBOU,INLET/3/
REAL DELTIM/0.005/,DELPOS/0.5/,COLD(63),CNEW(63),CTOT/O.O1/
REAL TIMMAX/5.0/,TIME,POS(63),CIN/1./
REAL DBD/1.4/,CEC/0.0/,VMC/0.4/,VELO/50./,DIFO/50./
REAL A(63),B(63),C(63),F(63),CINIT/0.05/
REAL DBDVMC,G,H,RETCO(63),ADS(63)
REAL ACCNEW,ACCOLD,ACCIN,ORMB,RMB,SUMFLU,SUMACC,FLUX

C
C VARIABLES
C INLET : INLET CONDITION(FIRST=1,THIRD=3)
C SIZE : NUMBER OF SPATIAL NODES
C K PRINT COUNTER
C DELTIM TIME STEP T
C DELPOS SPACE STEP L
C COLD : CONCENTRATION AT OLD TIME LEVEL
C CNEW : CONCENTRATION AT NEW TIME LEVEL
C CTOT : TOTAL SOLUTE CONCENTRATION M/L3
C TIMMAX : MAXIMUM TIME FOR NUMERICAL SIMULATION T
C CIN : ELUENT CONCENTRATION
C DBD : DRY BULK DENSITY M/L3
C CEC : CATION EXCHANGE CAPACITY (MMOL/G) M/M
C VMC : VOLUMETRIC WATER CONTENT L3/L3
C VELO : PORE WATER VELOCITY L/T
C DIFO DISPERSION COEFFICIENT L2/T

C CINIT INITIAL CONCENTRATION
PRINT,'
PRINT,'
PRINT,' * H 0 MSOIL

PRINT,' **I

PRINT,' * SOLUTION OF ADVECTION DISPERSION EQUATION *

PRINT,' * IN DIMENSIONLESS FORM, INCLUDING NON-LINEAR *1

PRINT,' * EXCHANGE, USING THE CRANK-NICHOLSON METHOD '

IF (INLET.EQ.1) THEN
PRINT,' * FIRST TYPE IBC HOMOGENEOUS SYSTEM *
ELSE
PRINT,' * THIRD TYPE IBC HOMOGENEOUS SYSTEM *
ENDIF
PRINT,' * *

PRINT,' ***************************************************

PRINT,'
C

PRINT,'TIMESTEP =' ,DELTIM
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PRINT, 'SPACE-INCREMENTh' ,DELPOS
PRINT,'

C
TIMEO0.O
K1l
DUMBOU=SIZE- 1

C
G=DIFO/ (2 .*DELPOS*DELPOS)
H=VELO/ (4. *DELPOS)

C
DBDVMC=DBD*CEC/ (vMc*cToT)

C
C DEFINE INITIAL CONDITIONS AND BOUNDARY CONDITIONS FOR THE PROBLEM
C POSED, AND POSITIONS
C

READ, (COLD(I) ,11,1O)
READ, (COLD(I) ,I=11 ,20)

C READ,(COLD(I),I=21,SIZE)
C

DO 11 1=21,SIZE
COLD(I)=CINIT

11 CONTINUE
C

ACCOLDO .0
DO 26 1=2,SIZE

CALL ADSORB(I ,ADS, COLD)
ACCOLD=ACCOLD+O . *DELPOS*(CTOT*VMC*(COLD(I-J.)+COLD( I) )±

26 CONTINUE
C

SUMFLUO .0
ACCIN=ACCOLD

C PRINT, 'ACCIN=' ,ACCIN
ORMBO0.O
RMBO0.O
CIN1l.

C
C IF(INLET.EQ.1) THEN
C COLD(1)=CIN
C ELSE
C COLD(1)=12.*VELO*DELPOS*CIN/(12.*VELO*DELPOS+25*DIFO)
C ENDIF
C

DO 10 1=1,SIZE
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115 FORMAT(' 1,3A6,16F6.2)
PRINT,'9

PRINT 114,TIME,ORMB,RMB,(COLD(I),1I1,SIZE,4)
PRINT 115,' 1, 1 ',' ,(ADS(I),I=1,SIZE,4)

c
C INITIALIZE DUMMY VARIABLES AND TRIDIAGONAL MATRIX
C

A(SIZE)=-1.0
C(SIZE)=O.O

C
WHILE (TIME.LE.TIMMAX) DO

c
CALL EXCHAN(SIZE, COLD, DBDVMC,RETCO)

C
IF (INLET.EQ.1)-THEN
A(1)0O.O
B(1)=1.0
C(1)0O.O
F(1)=CIN

ELSE
A(1)0O.O
B(1)=RETCO(1)±2.*DELTIM*(G+2.*H*(1+(H/G)))
C(1 )=-G*2 .*DELTIM
F(1)=(-B(1)+2.*RETCO(1) )*COLD(1)+

$ 2.*DELTIM*(G*COLD(2)+4.*H*(1+(H/G))*CIN)
ENDIF

C
DO 25 I=2,DUMBOU

A(I )=-G-H
C(I)=-G+H
B(I)2 .O*G+(RETCO(I)/DELTIM)

$ C(I)*COLD(I+1)
25 CONTINUE

C
B(SIZE)1I.+O.5*RETCO(SIZE)/(G*DELTIM)
F(SIZE)=COLD(DUMBOU-)+(B(SIZE)-2. )*COLD'(SIZE)

C
C SOLVE THE DIFFERENTIAL EQUATION WITH THE CRANK-NICOLSON METHOD
C BY USING THE THOMAS ALGORITHM
C

CALL TRIDIA(A,B,C,CNEW,F,SIZE, INLET)
C
C REQUIRED PRINTOUT.
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$ DBD*CEC*(ADS(I-1)+ADS(I)))
29 CONTINUE

C
FLUX=0. 5*VELO*DELTIMACTOTkVMC*(2*CIN-CNEW(SIZE)-COLD(SIZE))
SUMACC=ACCNEW-ACCIN
SUMFLU=SUMFLU+FLUX
RMB=100.*ABS( (ACCNIEW-ACCOLD-FLUX)/FLUX)
ORMB=100.*ABS( (SUMACC-SUMFLU)/SUMACC)
ACCOLD=ACCNEW

IF (K.EQ.PRINT) THEN
PRINT 114,TIME,ORMB,RMB,(CNEW(I),I=1,SIZE,4)
PRINT 115,1 1.1 1.1',(ADS(I),I=1,SIZE,4)

K=0
ENDIF
K=K+1

C
DO 60 I=1,SIZE

COLD(I )=CNEW(I)
60 CONTINUE

C
ENDWHILE

C
STOP
END

C

C
SUBROUTINE TRIDIA(A,B,C,CNEW,F,SIZE,I'NLET)

C
C THIS SUBROUTINE CONTAINS THE THOMAS-ALGORITHM, THE SOLUTION IS
C CONTAINED IN THE CNEW-ARRAY
C

REAL A(63),B(63),C(63),CNEW(63),F(63)
INTEGER SIZE, INLET

C
REAL GAMMA(63),BETA(63)
INTEGER I ,J,DUMBOU

C
DUMBOU=SI ZE-1

C
BETA(1)=B(1)
GAMMA (1) =F (1) /B (1)
DO 200 I=2,SI,ZE

98



CNEW(SIZE)=GAMMA(SIZE)
WHILE (I.GE.1) DO

CNEW(I)=GAMMA(I)-(C(I)*CNEW(I+1)/BETA(I))
I=I-1

ENDWHILE
C

RETURN
END

C
C *********************************************************

C
SUBROUTINE EXCHAN(SIZE,COLD,DBDVMC,RETCO)

C
REAL COLD(63),DBDVMC,RETCO(63)
INTEGER I,SIZE
REAL SLOPE(63)

C
DO 300 I=1,SIZE

SLOPE(I)=1.
RETCO(I)=1.+DBDVMC*SLOPE(I)

300 CONTINUE
C

RETURN
END

C
C *********************************************************************

c
SUBROUTINE ADSORB(I,ADS,CNEW)

C
REAL ADS(63),CNEW(63)
INTEGER I

C
ADS(I)=CNEW(I)
ADS(I-1)=CNEW(I-1)

C
RETURN
END

C
/GO
1.000 0.990 0.980 0.960 0.940 0.900 0.810 0.700 0.525 0.350
0.240 0.150 0.110 0.090 0.070 0.060 0.050 0.050 0.050 0.050
0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050
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Listing of LAY1

//FIG19B JOB (AYL59FL,124),'FEIKE LEIJ',MSGCLASSP,
// NOTIFY=AYL59FL,MSGLEVEL=(1,1),REGION=1024K,TIME=(1,59)
/*ROUTE PRINT RMT4
/*JOBPARM LINES=10
//STEP1 EXEC WATFIV
//WATFIV.SYSIN DD *
/JOB FEIKE,TIME=(05),PAGES=60
C
C VARIABLE DECLARATION

INTEGER I,J,K,NUMLAY/2/,LAY(2)/11,70/,SIZE/61/,DUMBOU,PRINT/10/,PC
REAL DELTIM/0.005/,DELPOS/0.5/,COLD(63),CNEW(63),CTOT/0.O1/
REAL TIMMAX/5.0/,TIME,POS(63),CIN,ADS(63)
REAL DBD(2)/2*1.4/,CEC(2)/0.01,0.01/,PULSE/0.5/
REAL VMC(2)/2*0.4/,VELO(2)/50.,50./,DIFO(2)/20.,20./
REAL A(63),B(63),C(63),F(63),CINIT/0.05/
REAL DBDVMC(2),G(2),H(2),RETCO(63),W(2),FLU(2)
REAL ACCNEW,ACCOLD,ACCIN,ORMB,RMB,SUMFLU,SUMACC,FLUX

C
VARIABLES

NUMLAY
LAY
SIZE
PRINT
DELTIM
DELPOS
TIMMAX
DBD
CEC
PULSE
VMC
VELO
DIFO
CINIT
CTOT

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT,

NUMBER OF LAYERS
INTERFACE NODES
NUMBER OF SPATIAL NODES
PRINT COUNTER
TIME STEP
SPACE STEP
MAXIMUM TIME FOR NUMERICAL SIMULATION
DRY BULK DENSITY
CATION EXCHANGE CAPACITY (MMOL/KG)

TIME OF PULSE DURATION
VOLUMETRIC WATER CONTENT
PORE WATER VELOCITY
DISPERSION COEFFICIENT
INITIAL CONCENTRATION
TOTAL CONCENTRATION

T
L
T
M/L3
M/M
T
L3/L3
L/T
L2/T

M/ L3

80,1
85,' *.******k********k*****************A******A.AA-AAA

85,' * LAYONE *1

85,' *

85,' * SOLUTION OF ADVECTION DISPERSION EQUATION '

85,' * IN DIMENSIONLESS FORM, INCLUDING NON-LINEAR '

85,' * EXCHANGE, USING THE CRANK-NICHOLSON METHOD *'
85,' * FIRST TYPE IBC A'

85,' * LINEAR & FAVORABLE EXCHANGE '

85,' ********************************************

PRINT 85,'--------
DO 15 K=1,NUMLAY
PRINT 95,' LAYER # ',K
PRINT,'

100

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
c

F~I



PRINT 90, 'DISPERSION COEFFICIENT ',DIFO(K), 'CM2/D'

PRINT 90, 'PORE WATER VELOCITY ' ,VELO(K), 'CM/D'
PRINT 90, 'CATION EXCHANGE CAPACITY' ,CEC(K), 'ME/G'
PRINT 90,'DRY BULK DENSITY 'DBD(K),'G/CM3'
PRINT,.'
PE (K)=VELO(K)*DELPOS/DIFO(K)
CR(K)=VELO (K) *DELTIM/DELPOS
PRINT 90,1'PECLET NUMBER' ,PE(K),'
PRINT 90,.'COURANT NUMBER' ,CR(K),'
PRINT 85,' ----

15 CONTINUE
C

PRINT,'
PRINT 90, 'TIMESTEP' ,DELTIM, 'D'
PRINT 90, 'SPACE-INCREMENT' ,DELPOS, 'CM'
PRINT,'1

80 FORMAT(1',A60)
85 FORMAT(A60)
90 FORMAT(A32,3X,F7.3-,A1O)

95 FORMAT(A40,3X,1I2)
C

DUMBOU=SIZE- 1
CIN1.,

C
DO 21 K=1,NUMLAY

G(K)=DIFO(.K)/ (2. .DELPOS*DELPOS)
H(K)=VELO(K)/ (4. *DELPOS)
DBDVMC(K)=DBD(K)*CEC(K)/ (vMC(K)*CToT)
W(K)=O.5

21 CONTINUE
C
C DEFINE INITIAL CONDITIONS AND BOUNDARY CONDITIONS FOR THE PROBLEM
C POSED, AND POSITIONS
C

DO 11 1=1,SIZE
COLD(I )=CINIT

11 CONTINUE
C

DO 10 1=1,SIZE
POS(I)=(I.-1)*DELPOS

10 CONTINUE
C
C DETERMINE INITIAL AMOUNT OF SOLUTE
C
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IF (I.EQ.LAY(K)) K=K+1
27 CONTINUE

C
SUMFLUO .0
ACCIN=ACCOLD

C
COLD(1 )=CIN

C
PRINT,' POSITIONS'
PRINT 113,' TIME.',' ORMB ',' RMB ',(POS(I),I=1,SIZE,4)

113 FORMAT(' ',3A6,16F6.1)
114 FORMAT(' ',19F6.2)

.115 FORMAT(' '3A6,16F6.2)
PRINT,'

C
TIME=O.
ORMB=O.
RMB=O.

C
PRINT 114,TIME,ORM4B,RMB,(COLD(I),I=1,SIZE,4)
PRINT 115,' ', 1'' ,(ADS(I),1I1,SIZE,4)
PC=1

c
C INITIALIZE DUMMY VARIABLES AND TRIDIAGONAL MATRIX
C

A(SIZE)=-1.O
C(SIzE)=O .0

C
WHILE (TIME.LE.TIMMAX) DO

C
CALL EXCHAN(SIZE ,W,LAY,COLD ,DBDVMCRETCO)

C
IF(TIME.LT.PULSE) THEN

CIN1l.
ELSE

CIN=CINIT
ENDIF

C
K1l

C
A(1)0O.O
B(1)=1.0
C(1)0O.O
F(1)=CIN
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W(K)=1 .1(1.+(FLU(K)/FLU(K+1)))

B(I)=(RETCO(I)/DELTIM)+2.*(W(K)k*G(K)+(1-W(K))*G(K+1))

$ COLD(I>-C(I)*COLD(I+1)'
K=K+1.

ELSE
A(I)=-G(K)-H(K)
c(I)=-G(K)sH(K)
B(I)=2.O*G(K)+(RETCO(I)/DELTIM)

$ C(I)*COLD(I+1)
ENDIF

25 CONTINUE
C

B(SIZE)1 .+O 5*RETco(sIzE)/ (G(K)*DELTIM)
F(SIZE)=COLD(DUMBOU)+(B(SIZE)-2. )*COLD(SIZE)

C
C SOLVE THE DIFFERENTIAL EQUATION WITH THE CRANK-NICOLSON METHOD

C BY USING THE THOMAS ALGORITHM
C

CALL TRIDIA(A,B,C,CNEW,F SIZE, INLET)
C

CALL EXCHAN(SIZE-,W,,LAY,,CNEWDBDVMC,RETCO)
C
C REQUIRED PRINTOUTANDMASS BALANCE CALCULATIONS
C

TIME=TIME+DELTIM
C

ACCNEWO 0
K(1
DO 29 1=2,SIZE

CALL ADSORB(I,K,ADS,CNEW)
ACCNEW=ACCNEW+O. 5*DELPOS*(CTOT*VMC(K)*(CNEW(I-1 )+CNEW(I) )±

$ DBD(K)*CEC(K)*(ADS(I'-1)+ADS(I)))
IF (I.EQ.LAY(K)) K=K+1

29 CONTINUE
C

FLUX=DELTIM*CTOT* (VELO (1) AVMC (1) CIN-O. 5*VELO (NUMLAY) *

$ VMC(NUMLAY)*(CNEW(SIZE)+COLD(SIZE)))
SUMACC=ACCNEW-ACCIN
SUMFLU=SUMFLU+FLUX
RMB=100.*AB ( (ACCNEW-ACCOLD-FLUX) /FLUX)
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ENDIF
PC=PC+1

DO 60 1=1,SIZE
COLD(I)=CNEW(I)

60 CONTINUE

ENDWHILE

STOP
END

SUBROUTINE TRIDIA(A,B,C,CNEW,F,SIZE,INLET)C

C THIS SUBROUTINE CONTAINS THE THOMAS-ALGORITHM,
C CONTAINED IN THE CNEW-ARRAY

THE SOLUTION IS

REAL A(63),B(63),C(63),CNEW(63),F(63)
INTEGER SIZE, INLET

REAL GAMMA(63),BETA(63)
INTEGER I ,J,DUMBOU

DUMBOUSI ZE -1

BETA (1) =B( 1)
GAMMA(1)=F(1)/B(1)
DO 200 1=2,SIZE

200 CONTINUE

BEGIN BACKWARD SUBSTITUTION FROM LAST ROW, INCLUDE BOUNDARY CONDITIONS

I=SIZE-1
CNEW(SIZE)=GAMMA(SIZE)
WHILE (I.GE.1) DO

CNEW(I)=GAMMA(I)-(C(I)*CNEW(I+l)/BETA(I))
I1I-1

ENDWHILE

RETURN
END

SUBROUTINE EXCHAN(SIZE,W,LAY,COLD,DBDVMC,RETCO)

REAL COLD(63).,DBDVMC(2),RETCO(63),W(2)
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INTEGER I,K,LAY(2),SIZE
REAL SLOPE(63)

C
K1l
DO 300 11I,SIZE

IF(I.LT.LAY(1))-THEN
SLOPE(I)1l.
RETCO(I)1 .+DBDVMC(K)*SLOPE(I)

ELSE IF (I.EQ.LAY(1)) THEN
RETCO(I)=W(K)*(1 .+DBDVMC(K) )+(1-W(K) )*(1 .+DBDVMC(K+1)*

$ (0.33333333333/(COLD(I)**O.666666666666)))
K=2

ELSE
SLOPE(I)=0.333333333333/(COLD(I)**0.6666666666666)
RETCO( I )1 .+DBDVMC(K)*SLOPE(I)-

ENDIF
300 CONTINUE

C
RETURN
END

C
C**********************************k

C
SUBROUTINE ADSORB(I ,K,ADS,CNEW)

C
REAL ADS(63),CNEW(63)
INTEGER I,K

C
IF(K.GT.1) THEN

ADS(I-1)=CNEW(I-1 )**0 .33333333333
ADS (I )=CNEW(I )**Q 3333333333

ELSE
ADS(I-1)=CNEW(I-1)
ADS(I)=CNEW(I)

ENDIF
.C

RETURN
END

/GO
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Listing of LAY3

//FIG21B JOB (AYLS9FL,124),'FEIKE LEIJ',MSGCLASS=P,
1/ NOTIFY=AYLS9FLMSGLEVEL=(1,1) ,REGION=1024KTIME=(1,59)
/*ROUTE PRINT RMT4
/*JOBPARM LINES=10
//STEP1 EXEC WATFIV
//WATFIV.SYSIN DD *

/JOB FEIKE,TIME=(05),PAGES=60
C
C VARIABLE DECLARATION

INTEGER I,J,K,NUMLAY/3/,LAY(3)/21,26,80/,SIZE/63/,DUMBOUPRINT/20/
INTEGER UPLAY(3) ,PC
REAL DELTIM/O.05/,DELPOS/O.5/,COLD(63),CNEW(63) ,CTOT/O.O1/
REAL TIMMAX/100./,TIME,POS(63),CIN/1./,ADSOLD(63),ADSNEW(63)
REAL DBD(3)/3*1.3/,CEC(3)./O.O1,O.O,O.O1/
REAL PE(3),CR(3),,VMC(3)/O.2,.4,.2/,DIFO(3)/4..,2.5,4./
REAL A(63),B(63),C(63),F(63),CINIT/O.O5/,VELO(3)/1.,.5,1./
REAL DBDVMC(3),G(3),H(3),DV(3),VD(3),RETCO(63)
REAL ACCNEW,ACCOLD ,ACCIN,ORMB ,RMB ,SUMFLU, SUMACC, FLUX

VARIABLES
NUMLAY
LAY
SIZE
PRINT
DELTIM
DELPOS
CTOT
TIMMAX
CIN
CINIT
DBD
CEC
VMC
VELO

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT,

NUMBER OF LAYERS
INTERFACE NODES
NUMBER OF SPACE NODES
PRINT FREQUENCY
TIME STEP
SPACE STEP
TOTAL CONCENTRATION
MAXIMUM TIME OF SIMULATION
ELUENT CONCENTRATION
INITIAL CONCENTRATION
DRY BULK DENSITY
CATION EXCHANGE CAPACITY (MMOL/KG)
VOLUMETRIC WATER CONTENT
PORE WATER VELOCITY.

80,
85,'
85,'
85,'1
85,'
85,'1
851,'
85,'1
85,'
8-5,'

YK*,,*

T
L
M/L3
T

M/L3
M/M
L3/L3
L/T

L A Y T HREE

SOLUTION OF ADVECTION DISPERSION EQUATION
IN DIMENSIONLESS FORM, INCLUDING NON-LINEAR
EXCHANGE, USING THE CRANK-NICHOLSON METHOD

THIRD TYPE IBC
SA ND

PRINT 85,' ---
DO 15 K1I,NUMLAY
PRINT 95,' LAYER
PRINT,'1

C

*t

*1

*1

*1

# K
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PRINT 90, 'DISPERSION COEFFICIENT ',DIFO(K), 'CM2/D'
PRINT 90, 'PORE WATER VELOCITY ',VELO(K), 'CM/D'
PRINT 90, 'CATION EXCHANGE CAPACITY' ,CEC(K), 'ME/G'
PRINT 90,'DRY BULK DENSITY I DBD(K),#G/CM3'
PRINT 90, 'VOLUMETRIC WATER CONTENT' ,VMC(K), 'CM3/,CM3'-
PRINT,'
PE(K)=VELO(K)*DELPOS/DIFO(K)
CR (K)=VELO (K) *DELTIM/DELPOS
PRINT 90,'PECLET NUMB ER' ,PE(K),'
PRINT 90,'COURANT NUMBER' ,CR(K),'
PRINT 85,' - - - - - - - -- - - - - - - - - -- - - - - - - - -

15 CONTINUE
C

PRINT,'
PRINT 90, 'TIMESTEP' ,DELTIM, 'D'
PRINT 90, 'SPACE-INCREMIENT' ,DELPOS, 'CM'
PRINT,'

80 FORMAT(1' ,A60)
85 FORMAT(A60)
90 FORMAT(A32,3X,F7.3,A1O)
95 FORMAT(A40,3X,12)
C

DUMBOU=SI ZE -1
C

DO 21 K=1,NUMLAY
G(K)=DIFO(K)/ (2,*DELPOS*DELPOS)
H(K)=VELO(K)/(4.*DELPOS)
DBDVMC(K)=DBD(K)*CEC.(K)/ (VMC(K)*CTOT)
UPLAY (K )=LAY(K) +1
VD(K)=2. *DELPOS*VELO(K)/DIFO(K)
DV(K)=2.*DIFO(K)/ (VELO(K)*DELPoS)

21 CONTINUE
c
C DEFINE*INITIAL CONDITIONS AND BOUNDARY CONDITIONS FOR THE PROBLEM
C POSED, AND POSITIONS
C

DO 11 1=1,SIZE
COLD(I )=CINIT

11 CONTINUE
c

K1l
DO 10 1=1,SIZE

POS(I)=(I-K)*DELPOS
IF (I.EQ.LAY(K)) K=K+1
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I=2
WHILE (I.LE.SIZE) DO

CALL ADSORB(I ,K,ADSOLD,COLD)
ACCOLD=ACCOLD+0.5*DELPOS*(CTOT*VMC(K)*(COLD(I-1)+COLD(I) )+

$ DBD(K)*CEC(K)*(ADSOLD(I-1)+ADSOLD(I)))
IF (I.EQ.LAY(K)) THEN

K=K+1
1=1+1

ENDIF
1=1+1

ENDWHILE
C

SUMFLU=0 .0
ACCIN=ACCOLD

C
COLD(1)=12.*VELO(1)*DELPOS*CIN/(12.*VELO(1)*DELPOS+25.*DIFO(1))

C.
PRINT,' POSITIONS'
PRINT 113,' TIME 1,1 ORMB 1,1 RMB l,(POS(I),I=1,21,4),

$ (P05(I) ,I=22,26,2) ,(P05(I) ,I=27,SIZE,4)
113 FORMAT(' ',3A5,19F5.1)
114 FORMAT(' 1,22F5.2)

PRINT!'
c

PC=1
TIMEO0.O

C
C INITIALIZE DUMMY VARIABLES AND TRIDIAGONAL MATRIX
C

A(SIZE)=-1.0
C(SIZE)=O .0

C
CALL EXCHAN(SIZELAYCOLD ,DBDVMC ,RETCO)

C
WHILE (TIME.LE.TIMMAX) DO

C
K1l

C
A(1)0O.O
B(1)=RETCO(1)+2.*DELTIM*(G(1)+2.*H(1)*(1.+(H(1)/G(1))))
C(1)=-G(1)*2.*DELTIM
F(1)=(-B(1)+2.*RETCO(1) )*COLD(1)+

$ 2.*DELTIM*(G(1)*COLD(2)+4.*H(1)*(1 .+(H(1)/G(1) ))*CIN)
C
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$ COLD(I+1)+( (G(K)-H(K) )*Dv(K+1)*vD(K) )*coLD(I+2)
ELSE IF(I.EQ.UPLAY(K)) THEN

A(I)=-(G(K+1)+H(K+1) )*vD(K+1)
B(I)=(RETCO(I)/DELTIM)+2.*G(K+1)+(G(K+1)+H(K+1))AVD(K+1)
c(I)=-2.*G(K+1)
F(I)=((G(K+1)+H(K+1))*DV(K)*VD(K+1))*COLD(I-2)+

$ ((G(K+1)+H(K+1) )*(1 .-DV(K))*VD(K+1))*COLD(I-1)+
$ ((RETCO(I)/DELTIM)-2.*G(K+1)-(G(K+1)-+H(K+1))*VD(K+1))*

$ COLD(I)+2.*G(K+1)*COLD(I+1)
K=K+1

ELSE
A(I)=-G(K)-H(K)
C(I).=-G(K)+H(K)
B(I )=2 O*G(K)+(RETCO(I )/DELTIM)

$ C(I)*coLD(I+1)
ENDIF

25 CONTINUE
C

B(SIZE)1l.+O.5*RETCO(SIZE)/(G(NUMLAY)*DELTIM)
F(SIZE)=COLD(DUMBOU)+(B(SIZE)-2. )*COLD(SIZE)

C
C SOLVE THE DIFFERENTIAL EQUATION WITH THE CRANK-NICOLSON METHOD
C BY USING THE THOMAS ALGORITHM
C

CALL TRIDIA(A,B,C,CNEW,F,SIZE,INLET)
C

CALL EXCHAN(SIZE ,LAY,CNEW,DBDVMC,RETCO)
C
C REQUIRED PRINTOUTANDMASS BALANCE CALCULATIONS
C

TIME=TIME+DELTIM
C

ACCNEW=0.0
I=2
K1l
WHILE (I.LE.SIZE) DO

CALL ADSORB(I ,K,ADSNEW,CNEW)
ACCNEW=ACCNEW+O. 5*DELPOS*(CTOTAVMC(K)*(CN4EW(I-I)+CNEW(I) )+

$ DBD(K)*CEC(K)*(ADSOLD(I-1)+ADSOLD(I)))
IF (I.EQ.LAY(K).) THEN

1=1+1
K=K+1

ENDIF
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RIIB100.*ABS (ACCN4EW-ACCOLD-FLUX) /FLUX
ORMB=10O.*ABS(SUMlACC-SUMIFLU)/SUMACC
ACCOLD=ACCNEW

C
IF (PC.EQ.PRINT) THEN

PRINT 114,TIME,ORM4B,RMB,(CNEW(I),I1.21,4),

$ (CNEW(I) ,I=22,26,2) ,(CNEW(I) ,I=27,SIZE,4)
PC=O

ENDIF
PC=PC+1

C
DO 60 I=1,SIZE

COLD(I )=CNEW(I)
ADSOLD( I)=ADSNEW(I)

60 CONTINUE
C

ENDWHILE
C

STOP
END

C

C
SUBROUTINE TRIDIA(A,B,C,CNEW,F,SIZE,INLET)

C
C THIS SUBROUTINE CONTAINS THE THOMAS-ALGORITHM,. THE SOLUTION IS
C CONTAINED IN THE CNEW-ARRAY
C

REAL A(63),B(63),C(63),CNEW(63),F(63)
INTEGER SIZE, INLET

C
REAL GAMMA(63),BETA(63)
INTEGER IJ,DUMBOU

C
DUMBOU=SIZE- 1

C
BETA (1)B ( 1)
GAMMA(1)=F(1)/B(1)
DO 200 1=2,SIZE

200 CONTINUE
C
C BEGIN BACKWARD SUBSTITUTION FROM LAST ROW, INCLUDE BOUNDARY CONDITIONS
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C
RETURN
END

C
C *********************************

C
SUBROUTINE EXCHAN(SIZE ,LAY, COLD,DBDVMC,RETCO)

C
REAL COLD(63),DBDVMC(3),RETCO(63)
INTEGER I,K,LAY(3),SIZE
REAL SLOPE(63)

C
K1l
DO 300 1=1,SIZE

IF (I.LE.LAY(1)) THEN
SLOPE(I)1l.
RETCO(I)1 .+DBDVMC(l)*SLOPE(I)

ELSE IF (I.GT.LAY(2)) THEN
SLOPE(I)1.,
RETCO(IX1 .+DBDVMC(3)*SLOPE(I)

ELSE
SLOPE(I)1l.
RETCO(I)=1 .+DBDVMC(2)*SLOPE(I)

ENDIF
300 CONTINUE
C

RETURN
END

C
C **********************************

C
SUBROUTINE ADSORB (I ,K,ADS ,CNEW)

C
REAL ADS(63),CNEW(63)
INTEGER I,K

C
ADS(I)=CNEW(I)
ADS(I-1)=CNEW(I-1)

C
RETURN
END

/GO
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Listing of VARTIM

//F1G22 JOB (AYL59FL,124),'FEIKE LEIJ',MSGCLASSP,

1/ NOTIFYAYL59FL,MSGLEVEL=(1,1),REGION1O24KTIME=(159)
/*ROUTE PRINT RMT4
/*JOBPARM LINES=10
//STEP1 EXEC WATFIV
//WATFIV.SYSIN DD *

/JOB FEIKE,TIME=(OS),PAGES=6O
C
C VARIABLE DECLARATION

INTEGER I,JPC,SIZE/25/,DUMBOU,INLET/3/
REAL DELTIM,DELPOS/O.5/,COLD(33),CNlEW(33),CTOT/0OO/
REAL TIMMAX/4.O/,TIME,POS(33),CIN/.,/
REAL DBD/1.45/,CEC/O.O/,VMC/O.4/,VELO/50./,DIFO/50./
REAL A(33),-B(33),C(33),F(33),CINIT/O.05/
REAL DBDVMC,G,-H,RETCO(33),ADS(33),PRSTEP/O.2/,PRTIMIE,SFT
REAL ACCNEWACCOLD,ACCIN,OR14B,RIIB,SUIFLU,SU14ACC, FLUX

LOGICAL CHANGE

VARIABLES
SIZE
INLET
DELPOS
DELTIM
CTOT
CINIT
PRSTEP
CIN
TIMMAX
DBD
CEC
VELO
DI FO
VMC

PRINT,'
PRINT,'
PRINT,'
PRINT,'
PRINT,'
PRINT,'
PRINT,'

NUMBER OF SPATIAL NODES
CONDITION AT INLET BOUNDARY (FIRST=1, THIRD=3)
SPACE STEP
(VARIABLE) TIME STEP
TOTAL CONCENTRATION
INITIAL CONCENTRATION
TIME STEP FOR PRINTING
ELUENT CONCENTRATION
MAXIMUM TIME FOR NUMERICAL SIMULATION

DRY BULK DENSITY
CATION EXCHANGE CAPACITY (MOL/KG)

PORE WATER VELOCITY
DISPERSION COEFFICIENT
VOLUMETRIC WATER CONTENT

L
T
~M/L3

N /L

T
IL 3
M/ M
L/T
L2/T
L3/L3

*V VA R T I ME

4r *

SOLUTION OF ADVECTION DISPERSION EQUATION
IN DIMENSIONLESS FORM, INCLUDING NON-LINEAR

EXCHANGE, USING THE CRANK-NICHOLSON METHOD

IF (INLET.EQ.1) THEN

PRINT,' * FIRST TYPE IBC
ELSE

PRINT,' * THIRD TYPE IBC
ENDIF
PRINT,' *

PRINT,' ************

PRINT,'

PRINT, 'SPACE-INCREMENT' ,DELPOS

HOMOGENEOUS SYSTEM

HOMOGENEOUS SYSTEM

*1

*1

*1

*1
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C
C
C
C
C
C
C
C
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PRINT,'
C

DELTIMO0.005
TIMEO0.O
PC=1
DUMIBOU=SIZE-1
CHANGE . TRUE.

C
GDIFO/ (2 .*DELPOS*DELPOS)

H=VELO/ (4. *DELPOS)
C

DBDVMC=DBD*CEC/ (vMlc*cToT)
C
C DEFINE INITIAL CONDITIONS AND BOUNDARY CONDITIONS FOR THE PROBLEM
C POSED, AND POSITIONS
C

DO 11 11I,SIZE
COLD(I )=CINIT

11 CONTINUE
C

ACCOLDO .0
DO 26 1=2,SIZE

CALL ADSORB (IADSCOL)
ACCOLD=ACCOLD+O.5ADELPOS*(CTOTkVNC*(COLD(I-1 )+COLD(I) )+

$ DBD*CEC*(ADS(I-l1)+ADS(I)))
26 CONTINUE

C
SUMFLUO .0
ACCIN=ACCOLD

C
ORMBO0.O
RMBO0.O
CIN~1.

C
IF(INLET.EQ.1) THEN

COLD(1 )=CIN
ELSE

COLD (1 )=12 .*VELO*DELPOS*CIN/ (12 .*.VELOADELPOS+2 5 ADI FO)
ENDIF

C
DO 10 11I,SIZE

POS(I)=(I-1)*DELPOS
10 CONTINUE

C
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PRINT 115,1'f' I ',(ADS(I),I=1,SIZE,2)
C
C INITIALIZE DUMM4Y VARIABLES AND TRIDIAGONAL MATRIX
c

A(SIZE)=-1.0
C(SIzE)=O .0

C
WHILE (TIME.LE.TIMMAX) DO

C
CALL EXCHAN (SIZE,COLDDBDVMC, RETCO)

C
126 CONTINUE
C

IF (INLET.EQ.1) THEN
A(1)0O.0
B(1)=1.0
C(1)0O.0
F(1)=CIN

ELSE
A(1)0O.0
B(1>=RETCO(1)+2.kDELTIMA(G+2.*Hk(1+(H/G)))
C( 1)=-G*2.*DELTIII

F()=-B1) +2.*RETCO (1) )*COLD (1)+
$ 2.*DELTIM*(G*COLD(2)+4.*H*(1+(H/G))*CIN)
ENDIF

C
DO 25 1=2,DUMBOU

A(I )=-G-H
C(I)=-G+H
B(I )=2 .O*G+(RETCO(I)/DELTIM)

$ C(I)*COLD(I+1)
25 CONTINUE

C
B(SIZE)1 .+O .5*RETCO(SIZE)/ (G*DELTIM)
F(SIZE)=COLD(DUMBOU)+(B(SIZE)-2. )*COLD(SIZE)

C
C SOLVE THE DIFFERENTIAL EQUATION WITH THE CRANK-NICOLSON METHOD
C BY USING THE THOMAS ALGORITHM
C

CALL TRIDIA(A,B ,C,CNEW, F,SIZE,INLET)
C
C MASS BALANCE CALCULATIONS
c
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FLUXO0.5*VELO*DELTIMk*CTOTAVMIC*(2*CINi-CNEW(SIZE)-COLD(SIZE))
SUMACC=ACCNEW-ACCIN
S FT=S UMFLU+ FLUX
RMB=100.*ABS( (ACCNEW-ACCOLD-FLUX)/FLUX)
ORMB=100. *ABS (SUMIACC-SUIMFLU) /SFT

C
IF(TIME.GT.O.1) THEN

C
IF(DELTIM.LT.O.OOOOOOO1) THEN4

PRINT, MASS BALANCE ERROR AT T=',TIME
STOP

ELSE IF(ORMB.LE.O.5 .AND. CHANGE) THEN
DELTIM=2 .*DELTIM
CHANGE=. FALSE.
GO TO 126

ELSE IF (ORMB.GT.3,.AND. CHANGE) THEN
DELTIM0. SADELTIM
CHANGE= .FALSE.
GO TO 126

ENDIF
C

ENDIF
C

CHANGE=. TRUE.
SUMFLU=SUMFLU+ FLUX
ACCOLD=ACCNEW

C
C REQUIRED PRINT OUT
C

TIME=TIME+DELTIM-
PRTIM=PC*PRSTEP
IF (TIME.GE.PRTIM) THEN

PRINT 114,TIME,ORMB,RMB,(CNEW(I),I=1,SIZE,2)
PRINT 115,.1', ',' ,(ADS(I),I=1,SIZE,2)
PC=PC+1

ENDIF
C

DO 60 1=1,SIZE
COLD(I)=CNEW(I)

60 CONTINUE
C.

ENDWHILE
C

STOP
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C CONTAINED IN THE CINEW-ARRAY
c

REAL A(33),B(33),C(33"),CN\EW(33),F(33)
INTEGER SIZE, INLET

C
REAL GAMMA(.33),BETA(33)
INTEGER I ,J, DUNBOU

c
DUMBOU=SIZE -1

c
BETA(1)=B(1)
GAMMA(1)=F(l)/B(l)
DO 200 1=2,SIZE

200 CONTINUE
C
C BEGIN BACKWARD SUBSTITUTION FROM LAST ROW, INCLUDE BOUNDARY CONDITIONS
C

I=SIZE-1
CNEW(SIZE )=GAMMA(SIZE)
WHILE (I.GE.1) DO

CNEW(I)=GAMMA(I)-(C(I)*CNEW(I+1)/BETA(I))

ENDWHILE
C

RETURN
END

C

C

SUBROUTINE EXCHAN(SIZE,COLD,DBDVMC,RETCO)
C

REAL COLD(33)- ,DBDVMC,RETCO(33)
INTEGER I,SIZE
REAL SLOPE(33)

C
DO 300 I=1,SIZE

SLOPE(I)1l.
RETCO (I )=1 ±DBDVMC*S LOPE (I)

300 CONTINUE
C

RETURN
END

RETURN
END

c
/GO 116








