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Abstract—Joint estimation of spin density, R∗
2 decay and off-

resonance frequency maps is very useful in many magnetic
resonance imaging (MRI) applications. The standard multi-echo
approach can achieve high accuracy but requires a long acquisi-
tion time for sampling multiple k-space frames. There are many
approaches to accelerate the acquisition. Among them, single-
or multi-shot trajectory based sampling has recently drawn
attention due to its fast data acquisition. However, this sampling
strategy destroys the Fourier relationship between k-space and
images, leading to a great challenge for the reconstruction. In this
work, we present two trust region methods based on two different
linearization strategies for the nonlinear signal model. A trust
region is defined as a local area in the variable space where a local
linear approximation is trustable. In each iteration, the method
minimizes a local approximation within a trust region so that the
step size can be kept in a suitable scale. A continuation scheme is
applied to gradually reduce the regularization over the parameter
maps and facilitate convergence from poor initializations. The
two trust region methods are compared to two other previously
proposed methods—the nonlinear conjugate gradients and the
gradual refinement algorithm. Experiments based on various
synthetic data and real phantom data show that the two trust
region methods have a clear advantage in both speed and stability.

Index Terms—R∗
2 estimation, field map estimation, trust region

method, iterative algorithm

I. INTRODUCTION

QUANTIFICATION of R∗
2 and off-resonance frequency

maps is very important in many MR applications. For
example, R∗

2 quantification can be applied to BOLD functional
MRI [1], [2], iron deposition measurement [3], [4], and early
detection of articular joint degeneration [5], [6]. Off-resonance
quantification can be used to evaluate the severity of B0

inhomogeneity [7], and it shows promise in MR thermometry
[8]. In this paper, we focus on joint reconstruction of spin
density, R∗

2 decay and off-resonance frequency maps through
a single- or multi-shot trajectory. We model the time-varying
signal at each voxel as a mono-exponential function. Mono-
exponential modeling has been extensively used in many
relaxation time mapping applications such as T ∗

2 mapping [1]–
[6], T2 mapping [9], [10], T1 mapping [11], and T1ρ mapping
[10]. In this work, the initial value of the mono-exponential
model is spin density. The decay rate of the mono-exponential
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model is a complex number whose real and imaginary parts
are the R∗

2 decay and off-resonance frequency, respectively. It
should be noted that some other signal models [12]–[15] can
fit the image series more accurately than mono-exponential
in some applications. However, these models, such as multi-
exponentials [13], are usually more complicated and are not
addressed specifically in this work.

Among a variety of approaches to reconstruct R∗
2 decay

rate (reciprocal of T ∗
2 ) or off-resonance frequency, the multi-

echo based approach is an important one in many clinical
and research applications [1]–[6]. Typically, these methods
acquire multiple k-space frames each at a different echo time.
After the acquisition, these k-space frames are inverse Fourier
transformed and then a prior signal model such as the mono-
exponential model is fitted to the time-varying signal on a
voxel-by-voxel basis. The fitting gives an estimation of model
parameters, which in our application are the spin density,
R∗

2 decay, and off-resonance frequency maps. This approach
usually achieves high estimation accuracy and is therefore
the mainstream method for relaxation time reconstruction.
However, since multiple k-space frames must be fully sampled,
this approach takes a relatively long data acquisition time,
ranging from tens of seconds to minutes for one image slice
[3]–[7].

A remedy for the long acquisition time is to undersample
the multi-echo k-space frames [16]–[22]. Since each k-space
frame is undersampled, the acquisition time for multiple k-
space frames is reduced. However, the undersampling causes
an underdetermined reconstruction problem for each k-space
frame. Prior knowledge about the signal model is thus required
to make the problem well-posed. A common approach is to
exploit sparsity of the signal model in either spatial domain
[22], or temporal domain [19], [20], or simultaneously in both
domains [21]. For these techniques, the undersampling rate of
k-space is usually around 4-6.

As a similar idea to undersampling, reconstruction based
on single- or multi-shot trajectories has attracted increasing
interest [23]–[26]. These methods discard the idea of acquiring
multiple k-space frames; instead, they use a long readout time
in each readout cycle to expand their sampling to cover a long
time frame. At each time point, only one or a few k-space
samples are acquired, depending on the number of single-
shot trajectories used. However, the sampling density in the
time domain becomes much larger compared to multi-echo
sampling. Such sampling can be done in tens of milliseconds,
dramatically reducing the acquisition time. The challenge,
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however, lies in the exceedingly difficult image reconstruction
problem. We have observed the problem to be ill-conditioned,
nonlinear, and of large scale. This work thus focuses on
algorithms developed to stably and rapidly solve the problem.

Reference [23] may be one of the earliest papers that
proposed to reconstruct spin density, R∗

2 decay, and off-
resonance frequency maps through a single-shot trajectory.
Twieg reported that this method, named by PARSE, can be
applied to BOLD functional MRI to increase the estimation
precision and robustness. In this paper, Twieg explicitly for-
mulated the nonquadratic cost function and minimized it with
a steepest descend method which runs more than one hour
to obtain a satisfactory result. Reference [24] is an extension
of the previous paper, where Twieg and Reeves proposed a
customized conjugate gradient method that requires several
minutes for the same problem. They adopted a continuation
framework on data length to avoid local minima and increase
convergence speed. However, the robustness of the method to
different initializations and objects is unclear. Olafsson et al.
proposed a gradual refinement method to jointly reconstruct
R∗

2 decay and off-resonance maps [26]. The algorithm refines
each iterate toward the solution by employing the Gauss-
Newton method with linear conjugate gradients for each sub-
problem. However, this method does not have a line search in
each iteration. It also requires a given spin density map as an
input and only reconstructs the R∗

2 decay and off-resonance
maps. A good initialization for the two unknown maps is
required for this method since a line search is missing.

Overall, the published literature on joint reconstruction of
spin density, R∗

2 decay and off-resonance maps through a
single- or multi-shot trajectory is still sparse. Quite commonly,
the previously presented methods use a conjugate gradient
method or one of its variants to address the associated large-
scale nonlinear optimization problem. A good initialization is
also commonly used in previous methods [24], [26]. In this
work, we propose two novel regularized trust region (TR)
continuation methods to address the same optimization prob-
lem robustly. TR is a classical iterative method for nonlinear
optimization [27]–[29]. A trust region is defined as a local
area in the variable space where a local linear approximation
is trustable. In each iteration, the method minimizes a local
approximation within a trust region so that the step size can be
kept in a suitable scale. We compare the trust region method
to the nonlinear conjugate gradient method and the gradual
refinement method. In order to test the robustness, we empha-
size the capability of converging from a poor initialization.
A continuation method is applied with all other algorithms to
increase the range of initializations.

The rest of the paper is organized as follows. Section II
introduces the dynamic signal model and the cost function.
Section III elaborates on the two trust region methods and their
implementation details. The two algorithms used for compar-
ison and the continuation method are also covered in Section
III. Section IV shows details associated with reconstruction
based on real data. Section V and section VI draw various
comparisons between the trust region methods and the two
other methods based on various synthetic data and real data.
Section VII discusses the origin of each iterative method as

well as limitations of the two trust region methods and draws
some conclusion.

II. COST FUNCTION FORMULATION

Let m(~r), d(~r), f(~r) represent the spin density, the R∗
2

decay and the off-resonance frequency of a voxel located at
position ~r (relative to the center of the field of view). The
time-varying signal at this voxel is modeled as

m(~r)e(−d(~r)+ιf(~r))tl (1)

where ι represents the imaginary unit. Plugging in z(~r) ,
−d(~r) + ιf(~r), we rewrite (1) as

m(~r)ez(~r)tl (2)

In the following parts, we call z(~r) the complex frequency
at location ~r. Let ~klp denote a multi-shot trajectory where
l = 1, 2, . . . , L and p = 1, 2, . . . , P denote the lth time sample
and the pth trajectory shot among L samples and P shots.
When a single-shot trajectory is used, P = 1. The acquired k-
space data from a multi-shot trajectory can then be represented
by

ylp = slp(m(~r), z(~r)) + εlp (3)

slp(m(~r), z(~r)) =

∫
~r

m(~r)ez(~r)tle−2πι(~klp·~r)d~r (4)

for l = 1, 2, . . . , L and p = 1, 2, . . . , P . ylp, slp and εlp
represent the acquired k-space data, the predicted k-space
signal, and the noise at time tl and shot p, respectively. The
dot operator in the exponential term represents inner product.
Given data ylp for L discrete time points and P trajectory
shots, we want to estimate m(~r) and z(~r) for every voxel in
the FOV. To proceed, (4) requires a suitable discretization in
the spatial domain since data is discrete while unknown maps
are (piecewise) continuous. We therefore introduce a finite-
dimensional representation for m(~r)ez(~r)tl so that

m(~r)ez(~r)tl ≈
∑
n

mne
zntlg(~r − ~rn) (5)

where rn is the nth voxel geometric center, and mn , m(~rn),
zn , z(~rn). Function g(~r) is chosen as a linear interpolation
basis function in our work. With the approximation (5), we
can rewrite (4) as

slp(mn, zn) ≈ g̃lp
N−1∑
n=0

mne
zntle−2πι(~klp·~rn) (6)

where g̃lp , g̃(~klp) represents the sample of the Fourier
transform of g(~r) at ~klp. Because the noise in (4) is Gaussian,
we estimate the discrete unknowns based on minimizing a
least-squares objective function

‖~y − ~s(~m, ~z)‖2 (7)

where

~y , [y11, y21, . . . , yL1, y12, . . . , yL2, . . . , yLP ]T

~s , [s11, s21, . . . , sL1, s12, . . . , sL2, . . . , sLP ]T

~m , [m1,m2, . . . ,mN ]T

~z , [z1, z2, . . . , zN ]T
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Since the function (7) is usually ill-conditioned [30], we
apply regularization with respect to the unknown maps, which
changes (7) to:

‖~y − ~s(~m, ~z)‖2 + λ1‖D1 ~m‖2 + λ2‖D2~z‖2 (8)

where the matrices D1 and D2 are the regularization matrices
corresponding to ~m and ~z. For simplicity, we use the first-
order smoothness penalty for both D1 and D2 in this work.
Separate regularizations on the real and imaginary parts of
~z have also been utilized by other authors [26]. In the next
section, we focus on algorithms that can stably and rapidly
minimize (8) with respect to ~m and ~z.

III. PROPOSED TRUST REGION METHODS

In this section, we present two trust region (TR) methods
[27] namely the ordinary trust region method (OTR) and the
the change-of-variable trust region method (CVTR) due to
their different linearization strategies,

A. The ordinary trust region method
1) Approximating the local cost function: Finding a

quadratic approximation of the nonquadratic cost function is
the first step in utilizing a trust region method. Let m0n,
z0n represent the parameters at a reference voxel and ∆mn,
∆zn the offsets. Taking the first-order Taylor expansion about
m0n and z0n in the discrete version of (2) leads to the
approximation

mne
zntl ≈ m0ne

z0ntl + ∆mne
z0ntl +m0ne

z0ntl∆zntl (9)

where ∆mn and ∆zn are sufficiently small. With this approx-
imation, one then minimizes the following function in each
iteration:

min∆~m,∆~z ‖~ζ − [Θ1 Θ2][∆~mT ∆~zT ]T ‖2

s.t. ‖∆~m‖2 ≤ η1; ‖∆~z‖2 ≤ η2

(10)

where η1, η2 ∈ R+ and

[~ζ](l,p) , ylp −
∑
n

m0ne
z0ntle−2πι(~klp·~rn);

[Θ1](l,p),n , g̃lpe
zn0tle−2πι(~klp·~rn);

[Θ2](l,p),n , g̃lptlm0ne
zn0tle−2πι(~klp·~rn)

where (l, p) , (p − 1)L + l. This is a constrained linear
optimization problem.

2) Solving the sub-problem: Equation (10) with the regu-
larization in (8) is equivalent to

min∆~m,∆~z ‖~ζ − [Θ1 Θ2][∆~mT ∆~zT ]T ‖2

+ λ1‖D1(~m0 + ∆~m)‖2 + λ2‖D2(~z0 + ∆~z)‖2

+ σ1‖∆~m‖2 + σ2‖∆~z‖2
(11)

where σ1 and σ2 are properly chosen positive numbers. To
solve (11), we choose preconditioned linear conjugate gradi-
ents (PCG) [31]. We use diagonal preconditioners which are
defined as the inverse of the diagonal of the Hessian in (11).
The maximal number of iterations for the sub-problem is set
to 40. However, convergence is usually reached within this
number with either a small gradient or a low iterate variation.

3) Summarizing OTR: The following procedure defines one
iteration of OTR. Throughout our work, we use µ1,2,3,4 =
0.60, 2, 0.99, 0.7.

Procedure 1
• If gradient or iterate variation is sufficiently small, the

algorithm is stopped.
• Minimize (11) with PCG. Let the solution be ∆~m, ∆~z.
• Calculate the ratio γ between the decrease in (10) and

the decrease in (8) caused by the new iterate.
• If γ > 0 (descent), ~m← ~m+ ∆~m and ~z ← ~z + ∆~z.
• If γ < µ1, then σ1 ← µ2σ1, σ2 ← µ2σ2. If γ > µ3,

then σ1 ← µ4σ1, and σ2 ← µ4σ2.

B. The change-of-variable trust region method with regular-
ization

1) Introducing CVTR: The difference between OTR and
CVTR lies in the local approximation. For CVTR, the nonlin-
ear signal model is first approximated by

mne
zntl ≈ mne

z0ntl(1+∆zntl) = mne
z0ntl+ez0ntlmn∆zntl

(12)
and then followed by combining mn∆zn into a new variable
cn

mne
zntl ≈ ez0ntlmn + tle

z0ntlcn (13)

Equation (13) also explains how the method is named. The
approximation leads to a different data fidelity term from the
one in (10):

‖~y − [Θ1 Θ3][~mT ~cT ]T ‖2 (14)

where
[Θ3](l,p),n = g̃lptle

zn0tle−2πι(~klp·~rn)

2) Reformulating the cost function for CVTR: A problem
arises when constructing the approximated cost function for
CVTR. The regularization of ~z would introduce a nonlinear
term in the cost function since zn = cn/mn for the nth
voxel. A straightforward solution is to regularize the point-
wise product of ~m and ~z. This solution leads to a new cost
function

‖~y − ~s(~m, ~z)‖2 + λ3‖D1 ~m‖2 + λ4‖D2(~m� ~z)‖2 (15)

where λ3,4 ∈ R+ and � represents the point-wise product
between two vectors. The main difference compared to (8) lies
in the regularization over ~z. A new sub-problem also arises for
CVTR

min~m,~c ‖~y − [Θ1 Θ3][~mT ~cT ]T ‖2

+λ3‖D1 ~m‖2 + λ4‖D2(~m� ~z0 + ~c)‖2

s.t. ‖~m− ~m0‖2 ≤ η3; ‖~c‖2 ≤ η4

(16)

where η3, η4 ∈ R+. Similar to (11), we use PCG to solve the
equivalent problem of (16) in each iteration:

min~m,~c ‖yl − [Θ1 Θ3][~mT ~cT ]T ‖2

+ λ3‖D1 ~m‖2 + λ4‖D2(~m� ~z0) +D2~c‖2

+ σ3‖~m− ~m0‖2 + σ4‖~c‖2
(17)

where σ3 and σ4 are properly chosen positive numbers.
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3) Specifying the trust region for CVTR: The trust region
of CVTR is less intuitive than OTR. Since |∆bn| = |cn/mn|
must be bounded above, |cn| must be bounded above and
|mn| must be bounded below. However, a lower bound for
the modulus of a complex number is hard to implement. A
more practical method is to set a bound for the variation of ~m
like the bound for ∆~m in OTR. This bounding method gives
the constraints in (16).

The two trust regions associated with the two linearization
methods bear further discussion. Figure 1 illustrates their dif-
ferences. The trust region of CVTR is nonconvex in the (~m, ~z)
domain due to the quotient cn/mn. This trust region makes
CVTR either slower than OTR when the trust region is small
or causes unacceptable updates when the trust region is large.
An advantage of the CVTR trust region is that it can be much
broader in the spin density direction. This advantage may help
stabilize the convergence of the spin density since the variation
of the spin density has a small influence on the convergence.
This advantage may also speed up the convergence of the spin
density when decay and frequency have good initial guesses.

𝑚𝑚

𝑧𝑧

𝑚𝑚

𝑧𝑧

� �

Fig. 1: Comparison between OTR (left) and CVTR (right)
trust regions in a simplified case where m and z are both
real scalars. The black and green lines represent trust region
constraints associated with m and z, respectively. The red dash
line represents the support for the local linearization.

4) Summarizing CVTR: The following defines an iteration
of CVTR. µ1,2,3,4 = 0.60, 2, 0.99, 0.7 as for OTR.

Procedure 2
• If gradient or iterate variation is sufficiently small, then

the algorithm is stopped.
• Minimize function (17) with PCG. Let the solution be
~mest, ~cest.

• Calculate the ratio γ between the decrease in (16) and
the decrease in (15) caused by the new iterate.

• If γ > 0 (descent), ~m← ~mest and ~z ← ~z + ~cest
~mest

.
• If γ < µ1, then σ1 ← µ2σ1, σ2 ← µ2σ2. If γ > µ3,

then σ1 ← µ4σ1, and σ2 ← µ4σ2.

C. Ill-conditioning and nonlinearity

We observed the conditioning of jointly estimating the spin
density, R∗

2 decay and the off-resonance frequency maps out
of a single-shot trajectory is very poor [30]. The severe ill-
conditioning as well as the nonlinearity of the signal model
(2) result in a great challenge for each iterative method. This
situation is illustrated in Figure 2, where the cost function
without regularization is plotted by varying R∗

2 decay and

off-resonance frequency at a reference voxel and holding all
other values constant. On one hand, the ill-conditioning mainly
exists in the R∗

2 decay direction, since a large variation of the
R∗

2 decay introduces a small variation of the function value.
On the other hand, the nonlinearity of the signal model is
reflected by the multiple local minima in the axis of off-
resonance frequency of this subspace. Such a function profile
dramatically increases the challenge for an iterative method.
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Fig. 2: Cost function without regularization in a neighbor-
hood of mn = 0.5, zn = 0 for all n. (a) 3d plot of
the cost function, and (b) level sets of the cost function
in (a). The actual complex frequency zn0

at this voxel is
zn0 = −17.19 sec−1 − ι24.04 Hz, located by the red square
in (b).

D. Alternative methods for comparison

We use a nonlinear conjugate gradient (NCG) method that
we previously developed for the same problem [32]. In each
iteration, the method uses an interpolating polynomial to make
an inexact line search, followed by a check to see whether
the residual decreases. If the residual does not decrease, an
exact line search based on a bisection method is applied.
This procedure improves the efficiency of the NCG method.
For this particular problem, rescaling of the variables was
reported to be necessary in order to hold mn and zn at the
same scale [16]. However, the rescaling parameter is usually
empirically selected, and any scale mismatch can cause a poor
optimization [18]. In this work, we replace rescaling with a
diagonal preconditioning which is defined for this nonlinear
forward operator as JHJ, where J represents the Jacobian
matrix at each iterate and H represents conjugate transpose.
We observe that the method speed is significantly improved
by the preconditioning. Moreover, preconditioning makes the
comparison between NCG and trust region methods fairer
since both use the same preconditioner.

The gradual refinement (GR) method used in our context
is inspired by the method developed in [26]. The reference
method only reconstructs R∗

2 decay and off-resonance fre-
quency maps. In our work, we extend the reference method
to simultaneously reconstruct the three parameter maps. In
each iteration, the GR method minimizes the approximated
cost function in (10) without the constraint. The method then
accepts the minimizer of the approximated function without a
line search (i.e. step length is always set to 1). [26] states
that the method converges well when a good initialization
is present. In our work, we observe that the GR method
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has a similar behavior. However, GR can sometimes fail
the reconstruction when initialization is poor, which makes
the algorithm behavior unpredictable. This characteristic is
compared to the trust region methods to demonstrate their
advantage in stability for this problem.

E. Continuation methods

Solving an ill-conditioned nonlinear equation system from
poor initializations usually requires a continuation method
[33], [34]. The continuation method embeds the original
problem into a one-parameter series of problems where the
complexity of the function surface and therefore the estimation
difficulty monotonically increase. The original problem is
set to be the last problem of this series with the previous
solution used as the initialization, so the sequence of solutions
converges to the solution of the original problem. Examples of
this method include the fixed-point continuation method (FPC)
devised for sparse reconstruction [35] and the progressive data
length method in [24].

In our work, the regularization parameters must be set
high when the algorithm starts from a distant initial guess
so that local minima can be avoided (Figure 2). The strong
regularization causes severe oversmoothing artifacts in the
estimates. These artifacts are then reduced by gradually re-
ducing the regularization parameters. Each set of the param-
eters is called a continuation phase. The continuation method
dramatically increases the probability of convergence from a
distant initialization for all algorithms. For all our experiments,
the algorithms actually used are the trust region continuation
methods, conjugate gradient continuation method (CGC), and
the gradual refinement continuation method (GRC). The trust
region continuation methods include the ordinary trust region
continuation method (OTRC) and the change-of-variable con-
tinuation method (CVTRC).

How to set the continuation scheme turns out to be
nontrivial. In this work, we use the same continuation scheme
for all methods and this continuation scheme is found in
a trial-and-error manner. Specifically, we first decide the
regularization parameters based on the object smoothness and
the noise level (e.g., running OTR with a good initialization
for varying regularization parameters). We then choose
a suitable number of continuation phases based on the
quality of the initialization. The closer the initialization is
to the minimizer, the fewer continuation phases we need for
convergence. We then find out the reduction factor for all
regularization parameters by trial-and-error.

Procedure 3
• Set λ1, λ2 (λ3, λ4 for CVTRC)
• For j = 1, . . . , J (outer loop)

– Set σ1,2

– For i = 1, . . . , I(j) (middle loop)
∗ Run Procedure 1 or Procedure 2

– End
– λ1 ← λ1/ξ1; λ2 ← λ2/ξ2 or λ3 ← λ3/ξ1; λ4 ←
λ4/ξ2

• End

F. Choices of parameters

CVTRC and OTRC are nested algorithms of three program
loops. The outer and middle loop are shown in Procedure 3;
the inner loop is the PCG loop in Procedure 1 & 2. In the
outer loop, we need to initialize λ1,2 or λ3,4 (regularization
parameters), assign ξ1 and ξ2 (regularization reductions in each
continuation phase), and decide J (number of continuation
phases). We also need to initialize σ1,2 before each middle
loop. λ1,2 or λ3,4 are somewhat dependent on the object and
noise level; however, the dependence is continuous and rather
insensitive to many different objects. For example, a phantom
and a human brain slice require about the same regularization
parameters based on our experiments, since they are similarly
smooth. ξ1,2 and J can be predetermined; in fact, in all our
experiments ξ1 = 10, ξ2 = 6 and J = 4. σ1 and σ2 are
initialized to 1e4 and 1e2 respectively in the first continuation
phase for all experiments. After that, they are automatically
updated based on Procedure 1 & 2 and passed on to the next
continuation phase when j increases.

The middle loop consists of I(j) iterations of Procedure
1 (for OTRC) or Procedure 2 (for CVTRC). In our work,
I(1), I(2), I(3), I(4) are set to be (30, 10, 10, 5) for both
OTRC and CVTRC. We set I(1)-I(4) differently to avoid too
many iterations for each continuation phase. Usually, the two
algorithms activate the stopping rule before the iteration limits.
Even when that does not happen, these numbers are large
enough to obtain a significant improvement in the estimate.
Parameters in the inner loop are primarily µ1,2,3,4. Choices of
these parameters can be found in standard literature on trust
region methods [27], [29], since they are a part of the algo-
rithm. Since NCGC and GRC address the same cost function
(8) with OTRC, we use identical regularization parameters and
continuation parameters for these two comparison algorithms.

.

IV. REAL DATA RECONSTRUCTION

The ultimate goal of the trust region algorithms is to
reconstruct from real MRI data with a minimal number of
trajectories. An important problem with real data is lack of
ground truth. In this work, we used a multi-echo gradient echo
sequence to estimate the three parameter maps for a cylindrical
phantom and treated the estimates as the gold standard [1]–[6].
The parameters for the multi-echo gradient echo sequence are:
TE = 5, 6, 7, 8, · · · 82 ms, TR = 200 ms, image size = 64 × 64,
bandwidth = 390 Hz/Pixel, FOV = 120 mm × 120 mm, slice
thickness = 2 mm, flip angle = 15◦. We used a long echo train
for phantoms to reduce noise. We employed a 32-channel head
coil but only used one channel of data for the reconstruction.
We chose the channel with the most uniform sensitivity. After
acquiring all k-space frames, we applied an inverse Fourier
transform to every frame and then a curve fitting on a voxel-
by-voxel basis to reconstruct the three parameter maps.

Theoretically, the data from any single-shot trajectory
should be approximately equal to ~s(~m, ~z) in (7) with ~m, ~z
given by the estimates from the multi-echo approach. However,
the difference between the actual k-space data and model k-
space data is very large in our findings. The large model
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Fig. 3: Simulation results: (a-c) ground truth for the spin density, R∗
2 decay and the off-resonance frequency, (d-f) OTRC

reconstruction results, (g-i) CVTRC reconstruction results, and (j-l) NCGC reconstruction results.
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Fig. 4: Convergence profiles of spin density (left), R∗
2 decay (middle) and off-resonance frequency (right). Red, green, blue,

and black lines represent OTRC, CVTRC, NCGC, and GRC, respectively. * indicates the algorithm did not converge .

mismatch causes the reconstruction for all algorithms to be
suboptimal. The reason is still under investigation. Possible
reasons include hidden inconsistency between the multi-echo
gradient echo sequence and the single-shot rosette trajectory,
trajectory miscalibration, and perhaps some model limitations
such as imperfect modeling for intra-voxel gradients. We have
especially paid attention to trajectory miscalibration because it
is a crucial factor within the model (6). We used the calibration
technique proposed in [36] to reduce the miscalibration, but
the precision level may be insufficient for this reconstruction
problem.

The trajectory we used in our experiment is a rosette trajec-
tory. This trajectory has been verified by others to be superior
in reconstruction quality to other single-shot trajectories such
as spirals and echo planar imaging (EPI) trajectories for this
problem [23], [37]. Its formulation is shown below

~kl =
1

2
kmax sin(wosctl)e

ιwrottl+θ (18)

where kmax denotes the range of k-space, wosc the oscillation
frequency, wrot the rotation frequency, and θ the initial angle
of the trajectory in the complex domain. In our work, wosc =
3196 rad/sec, wrot = 1577 rad/sec, time span of the trajectory
is 81.92 ms and totally 8192 samples are acquired. When a

single-shot rosette is used, θ=0◦. However, since the model
mismatch is large, we used multi-shot rosette trajectories
for reconstruction to improve the conditioning and make the
result less sensitive to modeling error. In particular, we used
four interleaved single-shot rosette of which θ equals to 0◦,
22.5◦, 45◦, and 67.5◦, respectively. We emphasize that the
focus of the real data reconstruction is on comparing the four
algorithms on their convergence performance rather than their
absolute accuracy relative to a gold standard.

V. SIMULATIONS

In this section, we show reconstructions based on a simu-
lated phantom and a human brain slice. We used a single-shot
rosette trajectory to synthesize k-space data, and the trajectory
is specified in the previous section. The model of the k-space
data is given by (6). The noise was white Gaussian and the
signal-to-noise ratio (SNR) in this work is defined as

SNR =
‖s‖2

‖s− s0‖2
where s is the noisy data and s0 is the noiseless data.
Normalized mean square error (NMSE) was used as a metric
for the accuracy of the reconstructions. The NMSE is defined
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Table 1: Convergence accuracy and time of OTRC, CVTRC, NCGC, and GRC for different data sets

Data Criteria OTRC CVTRC NCGC GRC 

SNR = 100 
(reference 

 regularization) 

Time(min) 8.2 8.3 26.7 -- 

NMSE(SD, Decay, Freq.) (0.09, 0.14, 0.03) (0.09, 0.20, 0.04) (0.14, 0.19, 0.05) -- 

SNR = 20 
(10x regularization) 

Time(min) 7.9 8.2 27.2 -- 

NMSE(SD, Decay, Freq.) (0.13, 0.26, 0.06) (0.14, 0.34, 0.08) (0.21, 0.47, 0.23) -- 

SNR = 10 
(100x regularization) 

Time(min) 7.8 9.7 25.7 7.1 

NMSE(SD, Decay, Freq.) (0.18, 0.35, 0.10) (0.20, 0.58, 0.10) (0.26, 0.54, 0.33) (0.18, 0.34, 0.10) 

Double Resolution 
(SNR = 100, reference  

regularization) 

Time(min) 10.9 10.8 34.2 -- 

NMSE(SD, Decay, Freq.) (0.17, 0.29, 0.07) (0.16, 0.39, 0.10) (0.22, 0.27, 0.07) -- 
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Fig. 5: Robustness of OTRC and CVTRC to variation of ξ1,2.
The top, middle and bottom lines show NMSE of CVTRC
(left) and OTRC (right) for varying ξ1 only, varying ξ2 only,
and simultaneously varying ξ1 and ξ2, respectively.

as:
NMSE =

‖f − f0‖2
‖f0‖2

where f and f0 represent the estimate and the ground truth. All
methods started at a trivial initialization: mn = 0.5 and zn = 0
for all n. For all experiments, we used a masking technique
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Fig. 6: Robustness of OTRC and CVTRC to regularization
parameter variation. The top and bottom lines show NMSE
of CVTRC (left) and OTRC (right) for varying λ3 only and
varying λ4 only, respectively.

to mask out voxels with low spin density before applying any
iterative algorithm. This technique has also commonly been
used by some other authors [26], [38]. All algorithms were
implemented using MATLAB and run with an Intel Core i7-
4700MQ CPU.

A. Simulated phantom

We simulated a piecewise continuous cylinder phantom to
mimic four small cylinders each filled with different materials
and placed within a large cylinder container. Since the off-
resonance map is often modeled as a smooth map [39], we
have smoothed the off-resonance map by a circular averaging
filter with a radius of 5 voxels. We use a triple to represent
the maps of the spin density, R∗

2 decay, and the off-resonance
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Fig. 7: Verification of the faster convergence of CVTRC than OTRC when good initial guesses for R∗
2 decay and off-resonance

frequency are present.

frequency for each material. The units for the R∗
2 decay and

off-resonance frequency are sec−1 and Hz. The parameters
of the material in the large container are (1, 20, 100). The
parameters of the four small containers in the middle are (0.2,
2, -20), (0.4, 10, 60), (0.6, 50, 140), and (0.8, 80, 200) in
a left-right, top-bottom order. Figure 3 (a-c) shows the three
parameter maps for the phantom.

Figure 3 shows the estimation results obtained through
OTRC, CVTRC, and NCGC with SNR = 100. All three
algorithms obtained reasonable reconstructions. Single-shot
reconstruction commonly manifests edge artifacts. We con-
jecture the artifacts are caused by insufficient sampling of the
k-space high-frequency band for a single-shot trajectory. These
artifacts are present for every method and do not influence the
comparison. Also, these artifacts can be reduced by increasing
the overall sampling using a technique such as a multi-shot
acquisition.

Figure 4 shows the convergence profiles associated with
OTRC, CVTRC, NCGC, and GRC for the same k-space data.
OTRC has about the same profile with CVTRC. CVTRC
appears to be slightly faster than OTRC and slightly less
accurate than OTRC especially on the R∗

2 decay reconstruc-
tion. However, both of them are much faster than NCGC. In
addition, GRC does not converge. It stops because the residual
and gradient become infinite in the next iterate. This numerical
instability is caused by the fact that a line search is missing
in GRC. Without a line search, the algorithm updates based
on a local quadratic approximation, which may increase the
actual cost function. Trust region methods never have this issue
because 1) minimization associated with the sub-problem is
always applied within a trust region and 2) a check is carried
out in each iteration to guarantee the residual reduction.

1) Robustness to different SNRs and discretization: Table
1 shows the accuracy and time required by different methods
in processing data sets with different SNR and different
discretization resolution. With different SNRs (100, 20, and
10), all methods except GRC are stable. However, OTRC has
higher accuracy than NCGC and also CVTRC, and both OTRC
and CVTRC are much faster than NCGC. GRC only converges
for SNR = 10, and its accuracy is roughly the same as OTRC.

Since GRC and OTRC have the same cost function, similar
accuracy is not surprising. However, the stability of GRC
is a major problem for the algorithm in the case of a poor
initialization. We need to point out that when SNR decreases,
the regularization parameters for all methods increase in order
to guarantee the convergence. However, since all methods have
the same regularization parameters for a given SNR, a direct
comparison of performance can still be made.

As real k-space data arises physically from continuous
parameter maps, a higher discretization resolution was used
when synthesizing k-space data to test the robustness of the
algorithms. As shown in Table 1, double resolution in the data
synthesis leads to longer reconstruction time and moderately
worse accuracy for all algorithms. OTRC and CVTRC still
achieve reasonable accuracy and still outperform NCGC and
GRC.

2) Robustness to ξ and λ parameter sets : Figure 5 shows
the different sensitivity of OTRC and CVTRC to variation of
ξ1 only, of ξ2 only, and of ξ1 and ξ2 simultaneously. When only
ξ1 or only ξ2 changes, CVTRC displays a large variation of
accuracy while OTRC does not. When both ξ1 and ξ2 change
by the same amount, CVTRC displays much better robustness
than it does when a single parameter changes. This experiment
demonstrates that the current implementation of CVTRC is
susceptible to relative variation between ξ1 and ξ2. It also
shows that OTRC is very robust for these parameters. Notice
what ξ1,2 influence are the two regularization parameters.
Hence, CVTRC relies more on a good match of the two
regularization parameters than OTRC. Figure 6 shows the
performance of the two algorithms when only λ1 or only
λ2 varies at the final continuation phase. The two algorithms
worked well for a wide range of variations for λ1,2.

3) Advantage of CVTRC: This experiment aims to show the
speed advantage of CVTRC over OTRC when an educated ~z
initialization exists. In this scenario, the fact that CVTRC has
a larger approximation support in the spin density dimension
should give it an advantage. We used the same simulated
phantom and applied two initializations to the parameter
maps. Both initializations are close to the ground truth of
~z and distant from that of ~m. The first initialization adds
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Fig. 8: A human brain transversal slice with synthetic k-space data. White noise with SNR = 100 added to the data. (a-c)
Gold standard for the spin density, R∗

2 decay and the off-resonance frequency, (d-f) OTRC reconstruction results, (g-i) CVTRC
reconstruction results, (j-l) NCGC reconstruction results, and (m-o) GRC reconstruction results. NMSE of the rectangle area
for the four algorithms: (5.0%, 5.2%, 2.7%) for OTRC, (4.3%, 6.1%, 3.6%) for CVTRC, (13.7%, 7.9%, 13.5%) for NCGC,
and (4.2%, 4.4%, 2.4%) for GRC.
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Fig. 9: Convergence profiles of the spin density (left), R∗
2 decay (middle) and the off-resonance frequency (right). Red, green,

blue, and black lines represent OTRC, CVTRC, NCGC, and GRC, respectively.

a small amount of noise to the ground truth of the ~z map,
and the second initialization randomly rotates the ~z map
by a small angle in space. Since the two initializations are
only statistically similar in initializing ~z, this experiment can
well verify that CVTRC converges faster than OTRC when
~z’s initialization is good. The results are shown in Figure
7. Despite the two initialization differences, CVTRC has a
more uniform and faster convergence profile than OTRC,
demonstrating the advantage of CVTRC.

B. Brain slice

Figure 8 shows the results of CVTRC, OTRC, NCGC, and
GRC for a transversal slice of a human brain and synthetic k-
space data. The slice crosses the orbitofrontal area of the brain

cortex where a large off-resonance ranging from -414 Hz to
378 Hz is present. The three parameter maps were obtained
through the aforementioned multi-echo approach. We used
SNR = 100 in this simulation. All four methods converged
by activating the stopping criterion, including GRC, which
does not converge for the simulated phantom with the same
SNR. In fact, as shown in Figure 9, GRC is even faster
than OTRC by roughly 20%. The speed gain is due to the
fact that GRC does not impose any trust region control and
therefore the variables vary freely in every iteration. This can
bring a faster convergence, as in this example, but it can also
destroy the convergence, as shown in the last one. Thus, GRC
is unpredictable. In comparison, OTRC uses the same cost
function but with a trust region control and maintains a good
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Fig. 10: Reconstruction of a real four-cylinder phantom with acquired k-t space data. (a-c) Gold standard for spin density, R∗
2

decay and off-resonance frequency, (d-f) OTRC reconstruction results, (g-i) CVTRC reconstruction results, and (j-l) NCGC
reconstruction results.
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Fig. 11: Convergence profiles of spin density (left), R∗
2 decay (middle) and off-resonance frequency (right). Red, green, blue,

and black lines represent OTRC, CVTRC, NCGC, and GRC, respectively.

balance between stability and speed.

From Figure 8 and Figure 9, we can also see that the ac-
curacy of reconstruction is generally worse than the simulated
phantom. This is because in the surrounding area of the brain
slice has either a fast R∗

2 decay or a low spin density. A low
spin density makes the estimation of the complex frequency
z(~r) in these voxels challenging because the time signal is not
sensitive to variations in z(~r) [40]. A large R∗

2 decay makes
estimation difficult for every parameter, since the amount of
data is limited. In this example, the intensity of many voxels
in this area becomes insignificant after 10 ms, leading to
a very small number of useful samples compared to an 80
ms trajectory. These factors together cause a high estimation
bias in the surrounding area, which increases the MSE of the
entire image. We calculated the NMSEs of algorithms for a
rectangular area in the middle, and these NMSEs are consistent
with findings in the previous experiment.

CVTRC generally has a larger estimation error than OTRC
in R∗

2 decay reconstruction in the presence of poor initializa-
tions. We conjecture that this is caused by the difference in
regularization used in CVTRC. In order to accommodate the
change of variables, we regularize ~m� ~z in the CVTRC cost
function rather than ~z alone. This causes a suboptimal regular-

ization over ~z, especially when regularization parameters are
small or when spin density is low.

VI. REAL K-SPACE DATA

As we state in section IV, we employed reconstructions
from acquired multi-echo data to obtain a gold standard.
A multi-echo rosette instead of a single-shot rosette was
used to acquire more data and reduce the error caused by
noise, model mismatch, and other possible unidentified factors.
Figure 10 shows the reconstruction results of OTRC, CVTRC,
and NCGC. GRC is not shown because it does not converge.
The other three methods lead to a reasonable reconstruction,
although considerable noise and boundary artifacts are present.
Figure 11 shows the convergence profiles of the four meth-
ods. GRC failed to converge at the end, demonstrating its
unpredictability. OTRC and CVTRC converged much faster
than NCGC, demonstrating their speed advantage. More severe
boundary artifacts were present in the OTRC and CVTRC
results than the GRC results. In fact, all our experiments
indicate that NCGC leads to a smoother result than other
methods. This may be caused by the well-known regularization
property of the conjugate gradient method when it stops early
[41]. However, the long time required to converge dramatically
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reduces this advantage of NCGC in the presence of a poor
initialization.

VII. CONCLUSIONS AND DISCUSSIONS

We have presented a new approach to joint reconstruction
of the spin density, R∗

2 decay and off-resonance frequency
maps through single- and multi-shot trajectories. This ap-
proach adopts the trust region framework commonly used
to solve nonlinear equation systems. Due to different local
approximation strategies, two trust region methods OTRC
and CVTRC were proposed. Experiments show that the two
methods outperform an NCG method in speed and the GR
method in stability. The four methods were applied to synthetic
k-space data based on simulated phantoms and an orbitofrontol
brain slice as well as real phantom data. Between the two
trust region methods OTRC and CVTRC, OTRC usually
has smaller boundary artifacts, but CVTRC can be faster in
the presence of a good complex frequency initialization. To
our knowledge, this is the first paper focusing on algorithm
stability and convergence speed in joint estimation of the three
parameter maps.

The origins of the three methods NCG, TR, and GR can
be traced to some of the classical methods in dealing with
nonlinear optimization. NCG itself is a classical method in
dealing with nonlinear optimization [42]. NCG holds a super-
linear convergence rate and is therefore faster than steepest
descent but slower than Newton-like methods. However, for a
large system, even a superlinear convergence rate can lead to
an intolerable computation time especially when a good pre-
conditioning is absent (cf. [31] P.150). GR can be categorized
as a truncated Gauss-Newton (TGN) method [43]. The method
is rooted in the Gauss-Newton method, yet in each iteration it
searches for the Gauss-Newton direction by iteratively solving
an approximated linear system with methods such as conjugate
gradients. This strategy makes TGN suitable for large-scale
systems. Since TGN is a Newton-like method, it can possibly
approach the quadratic convergence rate that the Newton
method possesses. In fact, TGN has been reported to be faster
than NCG with a suitable preconditioning in the inner problem
[43]. However, an important aspect for a general unconstrained
optimization problem is the line search in each iteration, which
is lacking in the current GR method and its source method
in [26]. The lack of line search causes the algorithm to be
unstable since the residual at the next iterate may be far away
from its predicted value. The trust region method solves this
issue by confining the variable space for calculating the Gauss-
Newton direction to be within a local domain called trust
region. The algorithm examines the residual at next iterate
for every iteration to make sure that the residual is actually
reduced. In addition, the trust region size can vary based on
the behavior of the previous iteration. This flexibility greatly
preserves the speed advantage of the Newton method. Overall,
these strategies allow TR to be faster than NCG and stabler
than the GR method. More discussion of the three methods
can be found in [31].

Experiments show that the full advantage of CVTRC in
utilizing a change-of-variable linearization is reduced by the

restriction on variations in ~m and the indirect regularization
of ~z. In particular, the restriction of the variation in ~m in
the trust region setup limits the convergence speed, and the
regularization over ~m�~z instead of ~z allows room for bound-
ary artifacts. It would be advantageous if these restrictions
concerning the trust region setup and the regularization can
be removed or replaced. However, this would be not trivial
to accomplish, since simply removing these restrictions will
cause the method to be unstable. With the current approach,
CVTRC works better than OTRC only when initialization of
~z is good.

Although the two methods can handle a wide range of
objects for joint reconstruction, there are still some limitations
in their capabilities. First, there seems to be a “workable”
range for each parameter map within which the convergence
can be guaranteed [24]. Currently, this range is estimated
empirically. For example, the largest R∗

2 decay rate should be
comparable to the readout time, and the spin density dynamic
range should be limited. Otherwise, artifacts would increase
in regions of low spin density. A deeper understanding of the
off-resonance frequency range is still needed. However, we
emphasize that these ranges are present for all reconstruction
methods and are dependent on the number of k-space samples.
Second, parameter tuning including the regularization param-
eters and the continuation related parameters are demanding
for the two methods. For most objects, these parameters do
not need to be changed much. However, we have observed
that a small variation of the parameters may help reduce the
boundary artifacts. In addition, the continuation scheme must
be changed when the initialization quality changes to maintain
the time efficiency of the two methods. This is challenging,
since various initializations are possible in a given application.
We are currently working on an auxiliary variable method
that provides a good initialization to the reconstruction very
efficiently [44]. This method is very promising as a way to
replace the continuation method used in the current methods.
Third, although the two trust region methods are faster than the
commonly used NCG method, they are still time-consuming
under the metric for clinically applicable methods. A C++ im-
plementation instead of the current MATLAB implementation
might achieve a speed gain of 10-50. Some fast computational
methods have also been proposed, such as using nonuniform
FFTs and time segmentation [38] or using Toeplitz-based
fast matrix multiplication [45]. These methods can be easily
applied to the two trust region methods, where the acceleration
could be several fold. Overall, the two proposed trust region
methods take some vital steps toward improving clinical MRI
methods for fast joint estimation of the spin density, R∗

2 decay
and off-resonance frequency maps.
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