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Embryo development and global change: how do reptile embryos respond to
ecologically relevant thermal stress?

Abstract

Two components of global change, climate change and urbanization, both contribute to increased ambient temperatures that may induce heat stress
or mortality in animals. Each phenomenon independently results in both increased mean temperatures and increased maximum day-time
temperatures; however, there is also the potential for these components to act synergistically: extreme temperatures due to the urban heat island
effect are likely to be exacerbated as the earth’s surface warms due to climate change. Many animals can respond to harmful temperatures
behaviorally, by altering their periods of activity or shifting their habitat use. Such behavioral compensation, however, is unavailable to embryos of
ectotherms which typically develop inside eggs in the ground and receive little or no parental care. Thus, this early life stage is expected to be more
vulnerable to harmful temperatures caused by aspects of global change, and yet, the effects of ecologically relevant thermal stress on these embryos
has received little attention. We sought to understand the consequences of such extreme temperatures on embryological development by utilizing
two species of lizard (Anolis sagrei and Anolis cristatellus) that commonly inhabit urban areas. We measured ground temperatures in an urban
landscape where lizards nest and modeled daily thermal fluctuations that included brief periods of extremely high temperatures. We then subjected
eggs of both species to various magnitudes and frequencies of these thermal fluctuations at multiple stages of embryo development. We report
results of embryo survival and highlight the potential for extreme incubation temperatures to differentially impact species.
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Are Lizards Toast?

Raymond B. Huey,' Jonathan B. Losos,? Craig Moritz

L izards should be relatively invulnera-
ble to warming: They are very good at
evading thermal stress, tolerate high
body temperatures, and resist water loss.
Nevertheless, on page 894 of this issue, Sin-
ervo ef al. (1) document extinctions of liz-
ard populations on five continents and argue
that global warming is responsible. They use
a simple biological model, validated against
observed extinctions, to predict that warm-
ing will drive almost 40% of all global lizard
populations extinct by 2080. If their predic-
tion is even close to correct, lizards may be
“the new amphibians™ (2) in a race toward
extinction.

A stark result for a genus of lizards in
Mexico leads off their paper: 12% of 200
previously validated Seeloporus populations
(all with intact habitats) went extinct in recent
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decades. Moreover, extinction probability was
correlated with magnitude of warming at that
site in spring, but not in other seasons. This
correlation suggests that extinction is driven
by energetic shortfalls during spring (when
reproductive energy demands are highest),
rather than by summer heat stress. Lizard nat-
ural history is instructive here: On hot days,
lizards seek cooler refuges, such as burrows.
With warming, lizards will spend longer peri-
ods in refuges, reducing foraging time, such
that net energy gain becomes insufficient for
reproduction; extinction ensues.

To test this mechanistic hypothesis, Sin-
ervo ef al. examined four S. serrifer popula-
tions, two of which have recently gone extinet
(see the first figure). Using field estimates of
maximum available body temperatures of liz-
ards (operative temperatures) at these sites
in spring and of body temperatures accept-
able for activity, they predicted the number
of hours per day that operative temperatures
exceeded a lizard's thermal preferences, thus
forcing retreat (see the second figure). At sites

Warming is held responsible for a rash of
extinctions of global lizard populations.

where the lizards are now extinct, predicted
time restrictions exceeded 3.85 hours: but at
sites where lizards persist, predicted restric-
tions were shorter. Sinervo ef al. then used
air temperature data from weather stations
to estimate time restrictions at all Méxican
sites. Sceloporus populations with predicted
restrictions above 383 hours in spring had
higher extinction rates than did populations
with shorter restrictions.

To predict future extinctions, Sinervo er
al. applied their history-validated approach to
current and future warming scenarios across
the globe, using 1216 lizard populations on
four continents. First, by resurveying known
lizard populations and conducting literature
surveys, they detected many extinctions; for
example, 21% of Madagascar lizard popu-
lations in nature reserves have gone extinct.
Estimated activity-time restrictions (with crit-
ical thresholds tuned to the thermal biology
of each lizard family) effectively predicted
populations that had gone extinct. Based on
these data, the authors estimate that by 2080,
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Abstract
Europe has the world’s most extensive network of conservation areas. Conservation areas are selected without
taking into account the effects of climate change, How effectively would such areas conserve biodiversity under
climate changer We

ssess the effectiveness of protected are d the Natura 2000 network in conserving a
large proportion of European plant and terrestrial vertebrate species under climate change. We found that by

2080,

63 *+ 2.1% of the species of European concern occurring in Natura 2000 arcas. Protected areas are expected to

+ 2.6% of the species would lose suitable climate in protected areas, whereas losses affected

retain climatic suitability for species better than unprotected areas (P < 0.001), but Natura 2000 areas retain

climate suimbility for species no better and sometimes less effectively than unprotected areas. The risk is high

that ongoing efforts to conserve Europe’s biodive

; are jeopardized by climate change. New policies are
required to avert this risk
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It is predicted that climate change will cause species extinctions and distributional shifts in coming
decades, but data to validate these predictions are relatively scarce. Here, we compare recent
and historical surveys for 48 Mexican lizard species at 200 sites. Since 1975, 12% of local
populations have gone extinct. We verified physiological models of extinction risk with observed local
extinctions and extended projections worldwide. Since 1975, we estimate that 4% of local
populations have gone extinct worldwide, but by 2080 local extinctions are projected to reach 39%
worldwide, and species extinctions may reach 20%. Global extinction projections were validated
with local extinctions observed from 1975 to 2009 for regional biotas on four other continents,
suggesting that lizards have already crossed a threshold for extinctions caused by climate change.
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decades. Moreover, extinction probability was
correlated with magnitude of warming at that
site in spring, but not in other seasons. This
correlation suggests that extinction is driven
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rather than by summer heat stress. Lizard nat-
ural history is instructive here: On hot days,
lizards seek cooler refuges, such as burrows.
With warming, lizards will spend longer peri-
ods in refuges, reducing foraging time, such
that net energy gain becomes insufficient for
reproduction; extinction ensues.

To test this mechanistic hypothesis, Sin-
ervo ef al. examined four S. serrifer popula-
tions, two of which have recently gone extinet
(see the first figure). Using field estimates of
maximum available body temperatures of liz-
ards (operative temperatures) at these sites
in spring and of body temperatures accept-
able for activity, they predicted the number
of hours per day that operative temperatures
exceeded a lizard's thermal preferences, thus
forcing retreat (see the second figure). At sites
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where the lizards are now extinct, predicted
time restrictions exceeded 3.85 hours: but at
sites where lizards persist, predicted restric-
tions were shorter. Sinervo ef al. then used
air temperature data from weather stations
to estimate time restrictions at all Méxican
sites. Sceloporus populations with predicted
restrictions above 383 hours in spring had
higher extinction rates than did populations
with shorter restrictions.

To predict future extinctions, Sinervo er
al. applied their history-validated approach to
current and future warming scenarios across
the globe, using 1216 lizard populations on
four continents. First, by resurveying known
lizard populations and conducting literature
surveys, they detected many extinctions; for
example, 21% of Madagascar lizard popu-
lations in nature reserves have gone extinct.
Estimated activity-time restrictions (with crit-
ical thresholds tuned to the thermal biology
of each lizard family) effectively predicted
populations that had gone extinct. Based on
these data, the authors estimate that by 2080,
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The evidence for rapid climate change now seems overwhelming. Global temperatures are predicted

torise by up to 4 °C by 2100, with associated alterations in precipitation patterns. Assessing the
consequences for biodiversity, and how they might be mitigated, is a Grand Challenge in ecology.
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Abstract

Europe has the world’s most extensive network of conservation areas. Conservation areas are selected without
taking into account the effects of climate change, How effectively would such areas conserve biodiversity under
climate change? We assess the effectiveness of protected areas and the Natura 2000 network in conserving a
large proportion of European plant and terrestrial vertebrate species under climate change. We found that by
2080, 58 £ 2.6% of the species would lose suitable climate in protected areas, whereas losses affected
63 + 2.1% of the species of European concern occurring in Natura 2000 areas. Protected areas are expected to
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climate suitability for speuu no better and sometimes less effectively than unprotected areas. The risk is high
that ongoing efforts to eonserve Europe’s biodiversity are jeopardized by climate change. New policies are
required to avert this risk
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