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Summary

1. The Non-Additive InVerses (nadiv) R software package contains functions to create and use

non-additive genetic relationshipmatrices in the animal model of quantitative genetics.

2. This study discusses the concepts relevant to non-additive genetic effects and introduces the

package.

3. nadiv includes functions to create the inverse of the dominance and epistatic relatedness matri-

ces from a pedigree, which are required for estimating these genetic variances in an animal model.

The study focuses on three widely used software programs in ecology and in evolutionary biology

(ASReml, MCMCglmm and WOMBAT) and how nadiv can be used in conjunction with each.

Simple tutorials are provided in the Supporting Information.
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Introduction

A major advance for the study of quantitative trait evolution

in wild populations was precipitated by the adoption of the

‘animal model’, a mixed effects model with a long and

proven history in the animal breeding sciences (Henderson

1984; Lynch & Walsh 1998; Kruuk 2004). Using the simi-

larity among relatives to elucidate the underlying genetic

basis of phenotypic variation at the population level, the

method (1) enables researchers to control (or study in

and of themselves) confounding factors because of environ-

mental or other non-heritable sources of similarity between

relatives, (2) simultaneously utilizes additional relationships

beyond parent-offspring or half- and full siblings in the

estimation of genetic parameters, thereby increasing the

types of populations and organisms able to be studied and

(3) is unbiased to selection within a population (Lynch &

Walsh 1998; Kruuk 2004). Response variables in animal

models may be univariate, multivariate, Gaussian or non-

Gaussian. Further, solutions to the animal model may be

obtained using Likelihood or Bayesian approaches (further

information in the Supporting Information Relatedness

matrices in the animal model section and detailed descrip-

tions of the animal model can be found in Lynch & Walsh

1998; Sorensen & Gianola, 2002; Kruuk 2004; Mrode,

2005).

The phenotypic variance of a quantitative trait can be bro-

ken down into additive genetic, non-additive genetic and envi-

ronmental sources of variation. The non-additive genetic

variance can be further subdivided into dominance and epi-

static variances. The additive, dominance and epistatic genetic

variances are proportional to the probability that individuals

share alleles identical by descent at the same locus, for both

alleles at the same locus, or for alleles at different loci, respec-

tively. If one knows all the relationships in a population (i.e.

the pedigree) then the above genetic variances can be estimated

in an animalmodel.

Non-additive genetic variances are seldom, if ever, estimated

in ecological and evolutionary analyses (but see, Crnokrak &

Roff 1995;Waldmann 2001), although the fields of animal and

plant breeding have been estimating these genetic variances for

over two decades (e.g. Hoeschele 1991; Tempelman & Burn-

side 1991). This could be, in part, because non-additive genetic

effects are assumed to be of little importance in predicting the

evolutionary trajectory of moderately sized wild populations

(Fisher 1958). Also, studies of wild organisms typically have

low numbers of individuals in a population, especially com-

pared to the millions often handled in animal breeding. This is

problematic, because datasets with too few individuals pre-

clude the inclusion of too many random effects in an animal

model (Kruuk 2004) and have been shown to be problematic*Correspondence author. E-mail: matthew.wolak@email.ucr.edu
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for the estimation of dominance variance (Misztal 1997). How-

ever, if dominance genetic effects are present, but not included

in an animal model, they can potentially bias the prediction of

the additive genetic effects as well as the estimate of additive

genetic variance (Lynch & Walsh 1998; Ovaskainen, Cano &

Merilä 2008;Waldmann et al. 2008; but seeMisztal, Lawlor &

Fernando 1997). Additionally, non-additive effects are of

central interest to a number of evolutionary hypotheses, for

example: dominance and epistasis are expected to contribute

substantially to variation in fitness (Wright 1929; Haldane

1932; Fisher 1958; Crnokrak & Roff 1995; Merilä & Sheldon

1999); non-additive variance may determine the extent to

which additive genetic variance increases after bottlenecks

(Cockerham & Tachida 1988; Goodnight 1988; Willis & Orr

1993; Barton & Turelli 2004); epistasis can shape additive

genetic effects and variances during processes such as mutation

and selection (Gavrilets 1993; Hermisson, Hansen & Wagner

2003; Carter, Hermisson & Hansen 2005) which has conse-

quences for the evolution of sex and recombination (Charles-

worth 1990); epistasis plays an integral part in speciation

through the evolution ofDobzhansky-Muller incompatibilities

(Crow & Kimura 1970; Orr 1995; Welch 2004); the sign of

genetic correlations between fitness-related traits may depend

on the amount of dominance variance (Curtsinger, Service &

Prout 1994; Roff 1997; Merilä & Sheldon 1999); dominance

potentially causes inbreeding depression or heterosis (Roff

1997) especially in small populations of conservation concern

(Waldmann et al. 2008); and sex-linked dominance effects may

play a role in the evolution of sexually dimorphic traits (Fairb-

airn &Roff 2006).

Aside from being unable to obtain meaningful estimates of

non-additive variances as a result of the overall size of a popu-

lation (see ‘‘Sampling covariances and confidence intervals’’

below), the next challenge to including dominance and epista-

sis in animal models is constructing the non-additive genetic

relationship matrices (i.e. dominance matrix D and the three

digenic epistatic matrices: additive by additive AA, additive by

dominanceAD and the dominance by dominanceDD – where

the additive genetic relationshipmatrix is represented byA and

boldfaced, upper-case letters indicate amatrix). A further chal-

lenge is to obtain the inverses of these matrices, which is what

is required to solve the system of equations in the animal

model. Although the process of constructing the necessary

matrix inverses has been worked out (e.g. Hoeschele & Van-

Raden 1991), only the creation of the additive inverse matrix

has been incorporated into software used by most ecologists

and evolutionary biologists: ASReml (Gilmour et al. 2009),

MCMCglmm (Hadfield 2010) and WOMBAT (Meyer 2007).

This study gives an overview of the software package nadiv

(Non-Additive InVerses), implemented in the widely used

statistical program R (R Development Core Team, 2011),

which can be used to construct dominance and epistatic genetic

relatedness matrices and their inverses. The inverses can subse-

quently be used in a variety of animal model software pro-

grams for univariate or multivariate analyses of quantitative

traits. Below, examples briefly demonstrate the main functions

using nadiv’s simulated data setwarcolak.

Dominance relatedness matrix construction:
makeD()

The relatedness in dominance genetic effects between individu-

als i and j, or coefficient of fraternity (Dij), can be approximated

by:

Dij ¼ ðhkmhln þ hknhlmÞ=4 eqn 1

(pp. 140–141 in Lynch &Walsh 1998) where k and l represent

the dam and sire of i,m and n the dam and sire of j, and h is the
additive genetic relatedness between individuals noted in the

subscripts (elements inA). For a list of coefficients of fraternity

between common types of relatives, I refer the reader to Lynch

& Walsh (1998, table 24Æ1 on p. 721) or tables 4 and 5 from

Fairbairn & Roff (2006). Equation 1 assumes no inbreeding

and ignores dominance connections through grandparents,

both for the sake of computational tractability (Ovaskainen,

Cano & Merilä 2008). All pairwise Dij in a population can be

approximated using the makeD() function of nadiv, assum-

ing no inbreeding. Accounting for the presence of inbreeding

in the relatedness matrix adds a great deal of complexity to the

estimation of dominance in an animal model (Smith & Mäki-

Tanila 1990). Despite the potential for inbreeding to alter the

estimates of Dij, de Boer & van Arendonk (1992) showed an

unbiased impact on the estimates of random effects in an ani-

mal model when inbreeding is moderately low and included as

a fixed effect in themodel.

Similar to algorithms that construct the additive genetic

relatedness matrix (or its inverse), makeD() requires a pedi-

gree as the main input. The pedigree must contain three col-

umns, ordered ID, Dam, Sire, and the rows are ordered such

that all parents occur in the ID column before their offspring

(if not, see fixPedigree() in pedantics; Morrissey &Wil-

son 2010). All unknown parents (e.g. the base population)

should be indicated with ‘NA’, ‘0’ or ‘*’:

Id dam sire
1 NA NA
2 NA NA
3 2 1
4 NA 1

The output of makeD() is a list of objects, from which the

inverse of the dominance relatedness matrix can be extracted

in two forms, depending upon the program in which it is

intended to be used. First, the output Dinv is the inverse of the

sparse matrixD and can be included in an animal model using

MCMCglmm, as demonstrated below (see the MCMCglmm

tutorial in the Supporting Information formore details):

> warcolak.ped <- warcolak[, c(1:3)]

> Dinv <- makeD(warcolak.ped)$Dinv

> warcolak$IDD <- warcolak$ID

> model.MCMC <- MCMCglmm(phenotype� 1,

+ random = �ID + IDD, data = warcolak,

+ ginverse = list(ID = Ainv, IDD = Dinv)

The object listDinv is the second form by which the

inverse of the dominance relatedness matrix is returned from
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makeD(). It is formatted so as to facilitate inclusion in either

ASReml or the ASReml-R package. This object is in the form

of ASReml’s general inverse list (also referred to as a g-inverse

or giv; Gilmour et al. 2009), which contains the non-zero ele-

ments of the lower triangle of a sparse matrix, in row order.

This can be used to include dominance as a random effect in

the asreml() function in R (more details in the Supporting

Information):

> ginvD <- makeD(warcolak.ped)$listDinv

> model.asr <- asreml(phenotype� 1,

+ random = �ped(ID) + giv(IDD), data = warcolak,

+ ginverse = list(ID = ginvA, IDD = ginvD))

The listDinv object can also be written to a text file for

inclusion in the analyses using the standalone ASReml pro-

gram (Supporting Information). Further, this format is very

similar to whatWOMBAT requires; however, the first two col-

umns must instead be ordered ‘column’ and then ‘row’ (the

opposite order of listDinv) and the log determinant of D

must also be provided. The first two columns of the list can eas-

ily be switched in R before saving the inverse to a file. The log

determinant is returned as the object logDet in makeD()

(Supporting Information).

Dominance relatedness matrix construction:
makeDsim()

Ovaskainen, Cano & Merilä (2008) elegantly explain how

eqn 1 yields an approximation of Dij, and demonstrate a more

accurate method, especially for complex pedigrees, to obtain

estimates of D through iteration. Briefly, their method explic-

itly traces alleles through a pedigree, thereby incorporating

effects of inbreeding and alternative routes by which alleles

can be shared (two processes left out of eqn 1). By repeatedly

implementing this method, an estimate of the coefficient of

fraternity (i.e. the probability two individuals share both

alleles identical by descent) is produced and standard errors

(diminishing in magnitude with an increase in number of iter-

ations) for the estimates in the D matrix can be calculated.

The difference between the coefficients of fraternity derived

from this method and eqn 1 is explained in Ovaskainen, Cano

& Merilä (2008). The function makeDsim() implements this

method as described in the appendix to Ovaskainen et al. R

code, such as makeDsim (warcolak.ped, N = 10000,

calcSE = TRUE), will construct the D inverse in matrix and

list formats for use in an animal model. The resulting output

can then be supplied to MCMCglmm, asreml, ASReml, or

WOMBAT as described earlier and indicated in the Support-

ing Information. The argument N = in makeDsim supplies

the number of iterations and thereby influences the standard

error of each entry inD.

Epistatic relatedness matrix construction

In addition to the dominance matrix, three digenic epistatic

relationship matrices (AA, AD and DD) can be constructed

using the functions makeAA() and makeDomEpi() (for

example, coefficients of relatedness because of digenic epistasis,

see p. 145 of Lynch & Walsh 1998). The latter of these two

functions can construct and invert D, AD and DD, all at once

to save computing time. The results returned by both of these

functions can be passed to MCMCglmm, asreml, ASReml and

WOMBAT in the exact same way as previously discussed for

makeD().

Sampling covariances and confidence intervals

One difficulty when estimating non-additive genetic variances

is that the covariance between relatives because of non-additive

genetic effects is highly confounded with other sources of simi-

larities between relatives (e.g. full siblings also display pheno-

typic similarities because of shared additive, maternal and

environmental effects). The sampling (co) variances for all ran-

dom effects in an animal model can be informative for deter-

mining the extent to which random effects are confounded.

These (co) variances of the variance estimates are derived from

the ‘Average Information’ matrix in animal models that utilize

the Average Information algorithm (Gilmour, Thompson &

Cullis 1995) to obtain the Residual Maximum Likelihood

(REML) parameter estimates. The function aiFun() extracts

the sampling (co) variances from the Average Information

matrix in asreml, allowing researchers to evaluate the preci-

sion and extent to which variance components are correlated

with one another:

> aiFun(model = model.asr, Dimnames = c(‘‘Va’’,

‘‘Vd’’, ‘‘Ve’’))

Further, the Supporting Information demonstrates how a

vector of these (co) variances can be obtained from the stand-

alone ASReml or WOMBAT programs and used in R. The

sampling (co) variances are organized into a matrix with the

sampling (co) variances of each variance component as the

diagonal and below-diagonal elements and correlations as the

above-diagonal elements. MCMCglmm uses a Bayesian

approach to fittingmodels, not REML, but similar evaluations

can be obtained by inspecting the posterior distributions and

autocorrelation for variance components (Supporting Infor-

mation).

Determining the extent to which variance components are

confounded with one another can also be achieved after an

asreml analysis by examining the profile likelihood surface of

each component using proLik():

> profile.add <- proLik(model.asr, component =

‘‘ped(ID)!ped’’)

A profile likelihood is a representation of the model log like-

lihoodwhen projected onto the parameter space for one partic-

ular parameter (or subset of parameters; Meyer 2008). The

change in the model log likelihood (calculated as a likelihood

ratio test statistic) can then be estimated along a range of val-

ues for a particular parameter, producing a profile likelihood

surface. When graphically depicted, using plot.pro-

Lik(profile.add), the profile likelihood surface of each

variance component in an animal model (Fig. 1) can be visu-

ally inspected to yield insights into the ability of the pedigree

structure to produce precise and unconfounded variance com-

ponent estimates (Meyer 2008). An additional utility of profile
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likelihoods is that they can be used to determine confidence

intervals for the variance components estimated in a mixed

model. This is often amore appropriate method than using the

standard errors (or sampling variances from the Average

Information matrix; Meyer 2008). Approximate 1- a upper

and lower confidence limits can be obtained when using the

proLik() function, for example by: profile.add$UCL and

profile.add$LCL, respectively. The accuracy of the approxi-

mated confidence limits can be set with the threshold argu-

ment.

Additional functions

A fewother functions are included innadiv andmay be useful

to others working with pedigrees and sparse matrices (matrices

containing mostly zeroes) in R. Notably, makeA() constructs

the additive genetic relatedness matrix. sm2list() converts a

sparse matrix (see the Matrix package) to a list consisting of

three columns (‘row’, ‘column’ and value – the last being

labelled by the user) that contain all non-zero, lower triangle

elements of a matrix in row order. Finally, double first cousins

are an informative relationship for estimating many types of

genetic variance (e.g. Fairbairn & Roff 2006). The function

findDFC() determines the number of unique pairs of double

first cousins present in a pedigree.

Space, speed and saving

Constructing the inverse of D can require a large amount of

computer memory and time for large, complex pedigrees.

Although some modified methods to address these constraints

exist (e.g. Hoeschele & VanRaden 1991; Schaeffer 2003), the

functions contained in nadiv can be executed in a timely

manner for the size and complexity of pedigrees usually studied

in ecology and evolutionary biology (<10 000 individuals),

even on personal computers. Additionally, automatic parallel-

ization of the processing is available for many of the functions

in nadiv (the default is always to use a single processor),

which can often result in dramatic time savings (Supporting

Information). Not all computer architectures will allow users

to take advantage of this capability in R, so I refer those inter-

ested to the package documentation of nadiv for more con-

sideration. Because creatingD every session is time prohibitive

for large populations, it is advisable to save non-additive

inverse matrices to a hard drive. The R functions save() and

load() are useful to store and retrieve, respectively, because

they preserve the R attributes that are required by the animal

model programs inR (i.e. MCMCglmm and asreml).

More information about the functions in nadiv can be

obtained from the package documentation (see the Compre-

hensive R Archive Network website: http://cran.r-project.org/

web/packages/nadiv/index.html). For amore thorough treat-

ment of how to use the functions in nadiv, please see the Sup-

porting Information tutorials.
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