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A new highly accurate interaction potential is constructed for the He–H2 van der Waals complex. This
potential is fitted to 1900 ab initio energies computed at the very large-basis coupled-cluster level
and augmented by corrections for higher-order excitations (up to full configuration interaction level)
and the diagonal Born-Oppenheimer correction. At the vibrationally averaged H–H bond length of
1.448736 bohrs, the well depth of our potential, 15.870 ± 0.065 K, is nearly 1 K larger than the
most accurate previous studies have indicated. In addition to constructing our own three-dimensional
potential in the van der Waals region, we present a reparameterization of the Boothroyd-Martin-
Peterson potential surface [A. I. Boothroyd, P. G. Martin, and M. R. Peterson, J. Chem. Phys. 119,
3187 (2003)] that is suitable for all configurations of the triatomic system. Finally, we use the newly
developed potentials to compute the properties of the lone bound states of 4He–H2 and 3He–H2 and
the interaction second virial coefficient of the hydrogen-helium mixture. © 2013 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4824299]

I. INTRODUCTION

Hydrogen and helium are the two most abundant species
in the universe. Accordingly, the interactions between helium
and molecular hydrogen are critical for understanding the
properties of many diverse astrophysical environments, from
the cooling of primordial gas to form stars1, 2 all the way to the
spectral features of ultracool white dwarfs.3 In the laboratory,
the He–H2 interactions are a significant factor determining the
properties of hydrogen clusters inside helium droplets (a pos-
sible way to supercool liquid para-H2 below its triple point
of 13.8 K down to its superfluid transition temperature of
∼1 K4, 5) and the formation of ultracold H2 molecules by cool-
ing with helium atoms in an optical trap.6

The other factor besides the experimental importance
that has contributed to the large number of computational
studies for the He–H2 complex is its simplicity. With only
four electrons, He–H2 is the simplest atom-molecule dimer.
Thus, it is a suitable testing ground for assessing the accu-
racy of different approaches to obtain ab initio weak interac-
tion energies, fit analytical potentials to these energies, and
compute properties of bound and resonance states as well as
elastic and inelastic scattering cross sections. Among many
ab initio He–H2 potentials constructed to date,7–14 the
Boothroyd-Martin-Peterson (BMP) surface14 is generally
considered the most accurate. This elaborate potential, con-
taining 112 adjustable parameters, was fitted to 25 065 ab
initio data points representing all kinds of conformations of
the triatomic system, including ones with very short (re-
pulsive) or very long (dissociative) values of the hydrogen-
hydrogen distance rHH. Thus, an important virtue of the
BMP potential is its ability to describe all phenomena asso-
ciated with the He–H–H triatomic system, including high-
energy and reactive scattering. On the other hand, the van
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der Waals (vdW) well region of the BMP potential energy
surface (PES) was described by data points computed in
earlier ab initio studies.11–13 The most accurate of them,
the 69 points of Tao,13 were obtained using the fourth-
order Møller-Plesset perturbation theory (MP4) and a 6s4p2d
+ (3s3p2d) basis set (we will adopt a notation where the
midbond functions, centered halfway between the H2 cen-
ter of mass (COM) and the helium atom, are listed in
parentheses).

The BMP potential has been employed in several studies
of the bound and resonance rovibrational states of the He–
H2 complex15–18 and of the low-energy elastic and inelastic
collisions of different isotopomers of He–H2.17, 19 In the lat-
ter case, Ref. 19 found that the computed state-to-state rovi-
brational cross sections were in quite a poor agreement with
experimental data:20 in fact, an older Muchnick-Russek (MR)
potential12 provided better agreement and therefore was used
in subsequent scattering studies.21, 22

It should be noted that the methods and basis sets em-
ployed in the ab initio calculations utilized to fit the BMP
potential are far from the current state of the art. Since 1994,
when the MR12 and Tao13 calculations were published, the
coupled-cluster method with single, double, and perturbative
triple excitations [CCSD(T)]23 has been unambiguously es-
tablished as the “gold standard” of quantum chemistry. The
use of CCSD(T), combined with correlation-consistent basis
sets,24 complete-basis-set (CBS) extrapolations,25 midbond
functions26 and, more recently, explicitly correlated R12/F12
approaches,27, 28 has allowed for calculations of weak interac-
tion energies of small and medium closed-shell dimers with
high and consistent accuracy.29, 30 In the last few years, the im-
portance of effects beyond CCSD(T), in particular of quadru-
ple excitations at the perturbative CCSDT(Q) level,31, 32 has
been investigated for a number of atomic and small molecular
dimers.33–38 For four-electron systems like He–H2, CCSDTQ
is equivalent to full configuration interaction (FCI), and an
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exact inclusion of quadruple excitations in a moderate basis
set is feasible.

A comparison of different four-electron complexes indi-
cates that computing an ab initio He–H2 potential is more de-
manding than for He–He but easier than for H2–H2. There are
three factors contributing to this: the number of basis func-
tion centers, the point group symmetry, and the number of
data points required to fit an analytical potential of a given di-
mensionality. The one-dimensional (1D) potential for the he-
lium dimer is now known to a truly amazing accuracy: at the
minimum separation, the nonrelativistic Born-Oppenheimer
(BO) He–He interaction energy amounts to −11.0006
± 0.0002 K39 as calculated variationally using four-electron
explicitly correlated functions.40 The relativistic, adiabatic,
and quantum electrodynamics corrections to the He–He po-
tential have been computed to similar accuracy.41 The H2–
H2 potential is 4D for rigid monomers and 6D for flexible
monomers. In the former case, 213 ab initio data points were
computed42 using CCSD(T) in basis sets as large as aug-cc-
pV5Z+(3s3p2d2f1g)≡a5Z+(33221) plus a FCI correction in
bases as large as aTZ+(332), with both contributions extrap-
olated to the CBS limit. The minimum H2–H2 interaction en-
ergy obtained in this way amounted to −56.96 ± 0.16 K. The
available 6D potentials are only slightly less accurate.43, 44

These results suggest that obtaining a He–H2 potential accu-
rate to a few hundredths of a Kelvin at the minimum should
be feasible using state-of-the-art electronic structure theory.
As we will see below, the potential of Tao,13 and thus also the
BMP potential, is only accurate to about 1 K at the minimum,
an error large enough to account for the observed discrepan-
cies of the BMP and experimental scattering cross sections.19

Interestingly, an accurate, CCSD(T)/a5Z He–H2 dipole mo-
ment surface has been constructed recently,45 but no effort
has been made to improve the BMP PES.

The objective of the present work is to construct a highly
accurate He–H2 interaction potential using state-of-the-art
techniques. The bulk of the interaction energy will be recov-
ered at the CCSD(T) level, but the contributions from higher
coupled-cluster excitations (all the way through FCI), rela-
tivistic corrections, and effects beyond the BO approxima-
tion will also be investigated. Large augmented correlation-
consistent aXZ bases with midbond functions, coupled with
CBS extrapolations, will be employed to ensure that the re-
sults are virtually converged with the basis set. The result-
ing ab initio data will be fitted to an analytical 3D potential
providing a greatly improved description of the He–H2 vdW
well compared to BMP. As our primary goal is reproducing
bound-state and low-energy scattering properties accurately,
we will make no effort to improve the regions of the surface
where rHH is far from its equilibrium value of 1.4015 bohrs.46

However, in addition to generating our own 3D fit for the van
der Waals well, we will refit the 112-parameter BMP poten-
tial replacing the original ab initio data in the vdW region by
our, significantly more accurate, values. The resulting poten-
tial combines an improved account of the vdW well with a
BMP-level description of other surface regions. Our new po-
tential will then be employed to compute the single bound
vibrational state of 4He–H2 and 3He–H2 and the second virial
coefficient of the hydrogen-helium mixture.

The structure of the rest of this paper is as follows. The
methodology and computational details concerning the cal-
culations of ab initio data points are described in Sec. II.
The resulting interaction energies are presented in Sec. III.
Section IV describes our analytical fit to the ab initio data and
Sec. V presents our reparameterization of the BMP surface.
Section VI details the properties of the bound rovibrational
state. Section VII describes the calculation of the second virial
coefficient. Finally, Sec. VIII presents conclusions.

II. METHODS AND COMPUTATIONAL DETAILS

The geometry of the interacting He–H2 system can be
specified by three variables: the H–H bond length rHH, the dis-
tance R from the helium atom to the center of the H2 molecule,
and the angle θ between the H2 molecular axis and the line
connecting the helium atom with the H2 COM. Due to the
symmetry of the system, only the values 0◦ ≤ θ ≤ 90◦ need
to be considered. The ab initio calculations have been car-
ried out on a 1900-point (rHH, R, θ ) grid, where rHH ∈ {1.1,
1.2, 1.3, 1.35, 1.4, 1.448736, 1.5, 1.55, 1.65, 1.75} bohrs, R ∈
{3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.2, 6.3, 6.4, 6.5, 6.6, 6.8, 7.0, 7.5,
8.0, 9.0, 10.0, 12.0, 15.0} bohrs, and θ ∈ {0◦, 10◦, 20◦, 30◦,
40◦, 50◦, 60◦, 70◦, 80◦, 90◦}. Thus, the calculations cover the
entire van der Waals well and the repulsive region up to about
3000 K, and the H2 molecule can undergo vibrations but can-
not break apart. The value 〈rHH〉 = 1.448736 bohrs represents
the H–H distance averaged over the ground vibrational state
of H2.47, 48

The interaction energy Eint for a given geometry (rHH,
R, θ ) is a sum of the monomer deformation energy Emon,def

= EH2 (rHH) − EH2 (r0) (where r0 = 1.4015 bohrs is the equi-
librium bond length of H2

46) and the two-body interaction
energy

Eint,2B = E
CCSD(T)
int + �ECCSDT

int + �EFCI
int + �EDBOC

int , (1)

where all “int” quantities on the rhs are interaction
energy contributions (EX

int = EX
He−H2

− EX
He − EX

H2
at any

level X), �ECCSDT
int = ECCSDT

int − E
CCSD(T)
int , �EFCI

int = EFCI
int

− ECCSDT
int , and �EDBOC

int is an estimate of the diagonal Born-
Oppenheimer correction (DBOC) term. The relativistic cor-
rection to interaction energy, �Erel

int , was also considered but
turned out to be negligible.

The calculations employed standard singly and dou-
bly augmented correlation-consistent basis sets aug-cc-
pVXZ≡aXZ and d-aug-cc-pVXZ≡daXZ with X = T, Q, 5,
6, and 7. The basis sets through X = 6 have been optimized
in Refs. 24 (hydrogen) and 49 (helium). The X = 7 bases
were taken from Ref. 50 (the aug-mcc-pV7Z set) for hydro-
gen and Ref. 51 for helium. Two kinds of midbond sets were
placed halfway between the He atom and the COM of the
H2 molecule: a “constant midbond” set (3s3p2d2f) ≡ (3322),
employed before in several calculations of weak interaction
energies52, 53 (the exponents are 0.9, 0.3, and 0.1 for sp and
0.6, 0.2 for df functions), and a “variable midbond” set aXZ,
taken as the hydrogen-atom basis with X the same as for
the atom-centered part of the set. The inclusion of the (aXZ)
midbond increases the basis set size by one third while the
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TABLE I. Two-body interaction energy contributions (in Kelvin) for the near-minimum geometry (rHH, R, θ )
= (1.448736 bohrs, 6.4 bohrs, 0◦) computed using different basis sets. The columns marked “extr.” contain CBS-
extrapolated contributions, with the value in the X row obtained using basis sets with cardinal numbers X − 1
and X. The values at the level used to compute all 1900 ab initio data points are marked in bold. The CCSD(T)
calculations for the da5Z+(da5Z) and da7Z+(da7Z) bases failed to converge.

E
CCSD(T)
int �ECCSDT

int �EFCI
int

Basis set Computed extr. Computed extr. Computed extr.

aTZ −13.234 −0.581 −0.025
aQZ −14.251 −15.001 −0.568 −0.558 −0.028 −0.031
a5Z −14.742 −15.199 −0.557 −0.545 −0.029 −0.030
a6Z −15.001 −15.327 −0.551 −0.544
a7Z −15.104 −15.285
aTZ+(3322) −14.923 −0.581 −0.029
aQZ+(3322) −15.106 −15.218 −0.566 −0.556 −0.029 −0.029
a5Z+(3322) −15.155 −15.206 −0.555 −0.544
a6Z+(3322) −15.184 −15.221 −0.550 −0.542
a7Z+(3322) −15.199 −15.226
aTZ+(aTZ) −14.801 −0.586 −0.028
aQZ+(aQZ) −15.103 −15.327 −0.566 −0.551 −0.029 −0.030
a5Z+(a5Z) −15.175 −15.252 −0.554 −0.541
a6Z+(a6Z) −15.206 −15.249
a7Z+(a7Z) −15.218 −15.239
daTZ −13.735
daQZ −14.738 −15.465
da5Z −15.022 −15.310
da6Z −15.141 −15.301
da7Z −15.181 −15.253
daTZ+(3322) −14.953
daQZ+(3322) −15.138 −15.252
da5Z+(3322) −15.173 −15.215
da6Z+(3322) −15.196 −15.225
da7Z+(3322) −15.209 −15.230
daTZ+(daTZ) −14.869
daQZ+(daQZ) −15.138 −15.344
da6Z+(da6Z) −15.213

addition of the (3322) set enlarges the basis by 6% (a7Z)–
52% (aTZ). The addition of midbond functions has been
shown to significantly speed up basis set convergence of
dispersion-dominated interaction energies26, 54 and can be
efficiently combined with standard CBS extrapolations55

even though the constant-midbond and variable-midbond
sequences exhibit slightly different convergence patterns.56

All interaction energies presented in this work include the
full counterpoise (CP) correction for basis set superposition
error.

The relativistic corrections were estimated at the
CCSD(T) level of theory using the second-order Douglas-
Kroll-Hess (DKH) Hamiltonian57, 58 and the a6Z+(a6Z) ba-
sis. The DBOC correction was computed at the CCSD
level59 using standard aXZ basis sets with and without
midbond.

All CCSD(T) energies and relativistic corrections were
computed with the MOLPRO2010.1 code.60 The CCSDT en-
ergies as well as the DBOC terms were obtained using the
CFOUR code,61 and the FCI energies were calculated by the
LUCIA program62 interfaced to DALTON2.0.63 The He and H2

monomers have only two electrons each and CCSD is equiva-

lent to FCI. Therefore, the CCSDT and FCI corrections were
computed for the dimer only.

III. INTERACTION ENERGIES

Our first task is to determine which basis sets give the
highest accuracy at a given level of theory while being feasi-
ble for all data points. To this end, we selected two charac-
teristic points: (rHH, R, θ ) = (1.448736 bohrs, 6.4 bohrs, 0◦)
(near the vdW minimum) and (rHH, R, θ ) = (1.448736 bohrs,
6.3 bohrs, 90◦) (near the saddle point in the minimum-energy
valley around the H2 molecule). For these two points, we ran
an extensive set of CCSD(T), CCSDT, and FCI calculations in
different basis sets with and without midbond. The results are
collected in Tables I and II for the minimum and saddle point
geometries, respectively. In addition to the computed results,
we present the values extrapolated to the CBS limit using the
standard X−3 technique.25 Only the correlation part of the in-
teraction energy is extrapolated; the Hartree-Fock (HF) part
converges significantly faster with the basis set and this part
was taken straight from the calculation in the larger of the two
basis sets used in the extrapolation. For example, the energy
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TABLE II. Two-body interaction energy contributions (in Kelvin) for the near-saddle point geometry (rHH,
R, θ ) = (1.448736 bohrs, 6.3 bohrs, 90◦) computed using different basis sets. The columns marked “extr.”
contain CBS-extrapolated contributions, with the value in the X row obtained using basis sets with cardinal
numbers X − 1 and X. The values at the level used to compute all 1900 ab initio data points are marked in
bold.

E
CCSD(T)
int �ECCSDT

int �EFCI
int

Basis set Computed extr. Computed extr. Computed extr.

aTZ −11.022 −0.446 −0.019
aQZ −12.369 −13.304 −0.441 −0.437 −0.022 −0.024
a5Z −13.010 −13.667 −0.434 −0.427 −0.023 −0.024
a6Z −13.357 −13.846 −0.431 −0.427
a7Z −13.550 −13.878
aTZ+(3322) −13.463 −0.454 −0.021
aQZ+(3322) −13.608 −13.677 −0.444 −0.436 −0.023 −0.024
a5Z+(3322) −13.657 −13.700 −0.435 −0.425
a6Z+(3322) −13.686 −13.726 −0.430 −0.423
a7Z+(3322) −13.703 −13.731
aTZ+(aTZ) −13.291 −0.457 −0.021
aQZ+(aQZ) −13.605 −13.813 −0.444 −0.434 −0.023 −0.024
a5Z+(a5Z) −13.676 −13.741 −0.434 −0.423
a6Z+(a6Z) −13.708 −13.750
a7Z+(a7Z) −13.721 −13.743
daTZ −11.738
daQZ −13.124 −14.116
da5Z −13.495 −13.886
da6Z −13.634 −13.825
da7Z −13.681 −13.759
daTZ+(3322) −13.508
daQZ+(3322) −13.641 −13.704
da5Z+(3322) −13.679 −13.713
da6Z+(3322) −13.700 −13.727
da7Z+(3322) −13.713 −13.734
daTZ+(daTZ) −13.371
daQZ+(daQZ) −13.645 −13.825
da5Z+(da5Z) −13.698 −13.744
da6Z+(da6Z) −13.717 −13.742
da7Z+(da7Z) −13.725 −13.740

E
CCSD(T)
int extrapolated from the a5Z and a6Z bases, which will

be denoted by E
CCSD(T)
int /a(5,6)Z, is a sum of the HF part com-

puted in the a6Z basis and the correlation part obtained from
the a5Z and a6Z results via the X−3 extrapolation.

The simplicity of the He–H2 dimer allows for CCSD(T)
calculations in the largest available basis sets, all the way
to doubly augmented septuple zeta (although, for the near-
minimum geometry, the da5Z+(da5Z) and da7Z+(da7Z) cal-
culations failed to converge due to near linear dependencies
in the basis set). The largest sets we were able to use at the
CCSDT and FCI levels were a6Z+(3322) (417 functions) and
a5Z (240 functions), respectively. The results in Tables I and
II show that CCSD(T) recovers 96%–97% of the FCI interac-
tion energy and that the inclusion of full triples increases this
percentage to 99.8%. Moreover, it is evident that the presence
of midbond functions dramatically improves basis set conver-
gence of the CCSD(T) interaction energy. Without midbond,
even the a7Z result is not fully converged and a similar ac-
curacy can be attained with the addition of a midbond (either
constant or variable) to the aQZ basis set. While the addition
of a second augmentation obviously improves the CCSD(T)

interaction energies, it is not cost effective because a larger
improvement is provided by the midbond functions. We chose
to use conventional CCSD(T) in favor of the explicitly cor-
related approaches CCSD(T)-F12a, CCSD(T)-F12b,64, 65 or
CCSD(T)(F12*)66 because, at this level of basis set conver-
gence, the residual approximations to CCSD-F12 and a con-
ventional (non-F12) treatment of triples become limiting fac-
tors for the accuracy attainable with the F12 approach.56, 67

Obviously, still more accurate interaction energies could be
obtained using four-electron explicitly correlated functions
with fully optimized nonlinear parameters.68 Such calcula-
tions have been carried out for selected geometries of the H2–
H2 complex,42, 69 however, they are too expensive to perform
on the entire He–H2 PES.

The �ECCSDT
int correction in Tables I and II exhibits fast

basis set convergence and is already accurate to about 20 mK
at the aQZ level. Contrary to the E

CCSD(T)
int case, the addition of

midbond functions is not beneficial for the full triples correc-
tion. The �EFCI

int effect is very small and converges even faster
in absolute terms—the aTZ results are already converged to a
few mK.
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TABLE III. The diagonal Born-Oppenheimer correction to the He–H2 in-
teraction energy (in Kelvin) for the near-minimum and near-saddle point ge-
ometries computed using different basis sets.

Basis set Minimum Saddle point

aTZ −0.051 −0.026
aQZ −0.054 −0.027
a5Z −0.055 −0.028
a6Z −0.055 −0.029
aTZ+(aTZ) −0.051 −0.028
aQZ+(aQZ) −0.054 −0.029
a5Z+(a5Z) −0.054 −0.029

At the level of accuracy pursued in this work, one has to
go beyond the nonrelativistic BO treatment. Therefore, we in-
vestigated the role of the relativistic correction (estimated us-
ing CCSD(T) with the second-order DKH Hamiltonian) and
of the DBOC term (computed at the CCSD level) for the
near-minimum and near-saddle point interaction energies pre-
sented in Tables I and II. The relativistic correction, computed
in the a6Z+(a6Z) basis set, amounts to 0.002 K for each of the
two geometries. Thus, this correction is negligible and we will
exclude it from further consideration. However, as the results
in Table III indicate, the DBOC correction is larger and needs
to be taken into account for all ab initio data points. Fortu-
nately, this correction exhibits fast basis set convergence and
computing it in the aTZ basis is fully adequate.

Combining the most accurate estimates of differ-
ent contributions: E

CCSD(T)
int /a(6,7)Z+(a(6,7)Z), �ECCSDT

int /
a(5,6)Z+(3322), �EFCI

int /a(Q,5)Z, �Erel
int /a6Z+(a6Z), and

�EDBOC
int /a6Z, gives total two-body He–H2 interaction ener-

gies of −15.864 ± 0.035 K and −14.217 ± 0.035 K for
the near-minimum and near-saddle point geometries, respec-
tively. The uncertainties of the CBS-extrapolated contribu-
tions E

CCSD(T)
int , �ECCSDT

int , and �EFCI
int were estimated as dif-

ferences between the extrapolated result and the value com-
puted in the larger of the two bases. Then, the uncertainties
of these contributions were added linearly along with an as-
sumed 0.005 K estimate of the uncertainty for the relativistic
and DBOC terms.

Some of the largest-basis calculations in Tables I and II
would be too costly to perform for all data points including
ones with only Cs point-group symmetry. Therefore, we de-
cided to restrict the calculations for all 1900 geometries to
bases up to a6Z+(a6Z), a5Z, aTZ, and aTZ for the E

CCSD(T)
int ,

�ECCSDT
int , �EFCI

int , and �EDBOC
int contributions, respectively.

Specifically, the ab initio two-body interaction energies were
estimated as

Eint,2B =E
CCSD(T)
int /a(5, 6)Z+(a(5, 6)Z)+�ECCSDT

int /a(Q,5)Z

+�EFCI
int /aTZ + �EDBOC

int /aTZ. (2)

For the two characteristic points presented in Tables I and
II, Eq. (2) leads to two-body interaction energy estimates of
−15.870 ± 0.065 K and −14.222 ± 0.059 K, respectively
(where we have estimated the uncertainties of E

CCSD(T)
int and

�ECCSDT
int as before but using smaller basis sets, and assumed

a 0.005 K uncertainty for �EFCI
int in addition to the 0.005 K

uncertainty for the combined relativistic and DBOC terms).

One should note the remarkable consistency of these esti-
mates with the largest-basis-set values of −15.864 ± 0.035 K
and −14.217 ± 0.035 K, respectively, indicating that the in-
teraction energies from Eq. (2) are highly accurate and that
our uncertainty estimates are reasonable (in fact, quite
conservative).

A two-dimensional (R, θ ) cross section through the two-
body PES corresponding to rHH = 1.448736 bohrs is pre-
sented in Fig. 1. This figure shows that the potential is only
weakly anisotropic throughout the van der Waals well. There
is, however, a somewhat stronger θ dependence in the repul-
sive region. As Eint, 2B(rHH, R, θ ) = Eint, 2B(rHH, R, 180◦ − θ ),
only the symmetry unique part of the PES is shown in Fig. 1.

The H–H potential energy curve, needed to compute the
monomer deformation correction Emon, def to the two-body in-
teraction energy, is known to a truly amazing accuracy. In this
work, we chose to follow the same approach as in the BMP
potential14 and computed the H–H binding energies from the
analytical fit of Schwenke.46 This fit, constructed in 1988,
compares very well to the newer, ultra-accurate ab initio re-
sults such as the calculations of Wolniewicz70 that include
the relativistic and nonadiabatic corrections. In particular, at
the near-minimum separation of 1.4 bohrs, the Schwenke po-
tential gives a binding energy of −0.17449537 hartree, while
the ab initio value of Ref. 70 is −0.17449581 hartree, a dif-
ference of just 0.14 K. The accuracy of the nonrelativistic
BO potential and of the relativistic and quantum electrody-
namics corrections has been further improved in the last few
years,40, 71–74 but the differences with respect to the results of
Ref. 70 are very small. For example, the most accurate nonrel-
ativistic BO result at 1.4 bohrs74 differs from the Ref. 70 value
by only 0.014 K. The additional benefit of using the Schwenke
potential to account for monomer deformation energy is that
any comparison between our potential and the BMP one14 can
be performed on equal terms using total interaction energies
Eint and their two-body components Eint, 2B, cf. Sec. V.

IV. ANALYTICAL FITS

To provide a highly accurate representation of the He–H2

van der Waals well, a 3D analytical potential was fitted to the
1900 ab initio two-body interaction energies. This potential
has a form

V (rHH, R, θ ) =
3∑

k=0

rk
HH

∑
l=0,2,4

(Akl0 + Akl1R + Akl2R
2)

× e−αkRPl(cos θ )

−
2∑

k=0

rk
HH

∑
l=0,2

∑
n=6,8,10

fn(dR)
Cnkl

Rn
Pl(cos θ ),

(3)

where Pl is the standard Legendre polynomial (with only even
values of l needed because of symmetry) and fn(dR) is the nth
Tang-Toennies damping function75

fn(dR) = 1 − e−dR

n∑
m=0

(dR)m

m!
. (4)
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FIG. 1. Contour plot of the symmetry unique fragment of the He–H2 two-body potential energy surface as a function of (R, θ ) for rHH = 1.448736 bohrs. The
energy unit is 1 K.

The 36 parameters Akli, the four short-range nonlinear param-
eters αk, 18 long-range constants Cnkl, and the damping pa-
rameter d were determined in the fitting process. One should
note that the interaction potential can be expected to exhibit
a more complicated anisotropy at small R than at large R:
therefore, the short-range part of V (rHH, R, θ ), the first line of
Eq. (3), involves a longer expansion in Legendre polynomials
than the long-range part. Moreover, an accurate calculation of
the rHH-dependent C6 asymptotic constant76 showed a nearly
perfect linear dependence in the range of rHH considered here.
Thus, while a term quadratic in rHH is somewhat helpful in fit-
ting the long-range part of V (rHH, R, θ ), a cubic term is not
needed at all; such a term is, however, absolutely crucial in
the short-range part.

The fitting process was initiated by looking at all ab initio
data with R ≥ 10 bohrs and fitting the long-range constants
Cnkl to these points only assuming no damping. Subsequently,
the Cnkl values were frozen while the remaining parameters
were fitted to all ab initio data points. The quantity that was
minimized in the fitting process was the uncertainty-weighted
root mean square error (RMSE)

RMSEσ =
√√√√1

n

∑
data points

(Efit − Eab initio)2

σ 2
, (5)

where σ is an estimated uncertainty of Eab initio, computed in
a manner that is a generalization of the estimates used for the
two characteristic points (Sec. III)

σ = (σCCSD(T) + σCCSDT) · 1.2, (6)

where the uncertainties of the (CBS-extrapolated) CCSD(T)
and CCSDT terms are computed in the same way as in Sec. III
and the factor of 1.2 is intended to account for the uncertain-
ties of the FCI and DBOC terms and the neglect of the rela-
tivistic correction, generalizing the value of 0.010 K assumed
for the characteristic points. The weighted RMSE defined in
Eq. (5) favors a reproduction of different ab initio two-body
energies to similar fractions of their uncertainties; we adopted
this form as we want to assure that the fitted values fall into
the (Eab initio − σ , Eab initio + σ ) intervals for all points. Our 59-
parameter fit does possess this desirable property—the fitted
energies deviate from the ab initio ones by 0.14σ on the av-
erage and 0.83σ at most. In terms of relative differences, the
calculated and fitted interaction energies differ by 0.12% on
the average and 46.1% at most, with all relative errors larger
than 0.6% occurring at R = 5.5 − 6.0 bohrs, the distances
closest to where the PES crosses zero. To conclude, our 3D fit
is fully consistent with the ab initio uncertainties even as the
latter might be considered somewhat too conservative.
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TABLE IV. Parameters of the 2D and 3D potentials V (R, θ ) and V (rHH, R, θ ) (Eqs. (7) and (3), respectively) fitted to the accurate two-body He–H2 interaction
energies computed in this work. The units of all parameters are such that Eqs. (7) and (3) give the potential in Kelvin when R and rHH are in bohr.39 Not all digits
listed are significant: the extra digits are given for consistency with the programmed expressions. In the lower part of the table, the values of the asymptotic
constants Cnkl are repeated in atomic units (hartree bohrn) to facilitate comparisons with literature.

2D 3D

Parameter k = 0 k = 0 k = 1 k = 2 k = 3

αk 2.01155883 1.90211567 1.89629405 2.60059283 1.84852909
Ak00 1 377 925.52298519 3 334 383.60380158 3 609 379.04543074 9 157 918.37253898 − 731 643.11212337
Ak01 1 981 577.7039402 − 1 168 113.10369338 − 258 231.25352943 − 6 343 635.82181885 233 964.00717458
Ak02 − 266 546.8863106 95 343.59692526 − 22 623.45610335 1 144 649.72208008 − 15 008.61360829
Ak03 5904.56215244
Ak20 − 99 350.22309416 − 2 656 122.74087459 4 327 331.07326328 5 347 011.18254587 2052.20960054
Ak21 854 663.16515132 847 915.1603025 − 1 376 067.74978694 − 3 931 124.07333934 120 048.72344083
Ak22 − 125 851.80420149 − 55 563.49555373 92 606.12637049 500 893.92781881 − 11 744.94220195
Ak23 4670.51556659
Ak40 263 921.00275228 − 542 641.3156615 788 190.0995706 − 2 081 778.35428045 − 49 522.30546869
Ak41 − 158 978.07103669 217 509.80753925 − 289 088.46172645 1 109 111.674834 48 835.07041915
Ak42 41 806.80926751 − 19 306.06640687 25 035.56370694 − 260 552.10717593 − 5650.23395223
Ak43 − 3643.84776417
d 3.16011458 3.97362189
C6k0 1.25504634 × 106 2.28959703 × 105 7.20151513 × 105 −8.36637311 × 103

C6k2 1.17102309 × 105 −3.48268888 × 104 4.61987518 × 104 4.04895328 × 104

C8k0 2.17129022 × 107 8.27533494 × 106 −4.21069871 × 106 9.32571992 × 106

C8k2 5.99393636 × 106 1.02403258 × 107 −1.96080228 × 107 1.15102734 × 107

C10k0 8.43596194 × 107 −3.30080231 × 108 7.66092689 × 108 −3.32557998 × 108

C10k2 1.26398210 × 108 −8.38176012 × 107 7.66008832 × 107 4.76561641 × 107

C6k0 [a.u.] 3.974 0.725 2.281 − 0.026
C6k2 [a.u.] 0.371 − 0.110 0.146 0.128
C8k0 [a.u.] 68.76 26.21 − 13.33 29.53
C8k2 [a.u.] 18.98 32.43 − 62.09 36.45
C10k0 [a.u.] 267.2 − 1045.3 2426.1 − 1053.1
C10k2 [a.u.] 400.3 − 265.4 242.6 150.9

It is also worthwhile to construct a simplified, 2D poten-
tial V (R, θ ) with the monomer flexibility effects neglected.
A proper selection of monomer geometry that maximizes
the predictive power of the rigid potential has been inves-
tigated quite extensively.77, 78 It has been shown that freez-
ing the monomer bond length at the equilibrium value re

(1.4015 bohrs for H2
46) is quite a poor choice if the result-

ing rigid potential is to be used to reproduce experimental
quantities such as spectra. A much better approach is to use
〈rHH〉, a bond length averaged over the vibrational function of
the monomer. For the ground vibrational state of H2, 〈rHH〉
amounts to 1.448736 bohrs.47, 48 Therefore, we obtained a 2D
analytical potential V (R, θ ) by setting rHH = 1.448736 bohrs
and fitting a 20-parameter expression

V (R, θ ) =
∑

l=0,2,4

(A0l0 + A0l1R + A0l2R
2 + A0l3R

3)

× e−α0RPl(cos θ )

−
∑
l=0,2

∑
n=6,8,10

fn(dR)
Cn0l

Rn
Pl(cos θ ) (7)

to the 190 ab initio energies computed for this value of rHH

(the fitting parameters are analogous to Eq. (3) but only the
r0

HH terms are present, thus the zero subscripts). The resulting
potential recovers the ab initio data to 0.10σ or 0.05% on the

average and 0.41σ or 1.0% in the worst case. A set of FOR-
TRAN codes to compute our 2D and 3D potentials for a given
geometry is provided in the supplementary material.79

The fitted parameters for both potentials are presented
in Table IV. In addition, this table lists the values of the
asymptotic constants Cnkl converted to atomic units. The
constants for the 2D and 3D potentials are consistent at
rHH = 1.448736 bohrs, with the differences at the C6, C8, and
C10 levels not exceeding 0.001, 0.12, and 8 a.u., respectively.
Moreover, the C6k0 and C6k2 values computed from our 3D
potential are in very good agreement with the ab initio rHH-
dependent asymptotic constants from the literature:76, 80 the
differences with the values computed in Ref. 80 at rHH = 1.2,
1.4, 1.449, and 1.65 bohrs do not exceed 0.07 a.u. The agree-
ment is worse but still reasonable for C8k0 and C8k2 (with dif-
ferences up to 20 a.u. or 30%), but the C10k0 values obtained
from Table IV are significantly different from the ab initio
ones of Ref. 80: as expected, higher asymptotic coefficients
are progressively harder to recover by fitting to interaction
energies at finite separations.

V. REPARAMETERIZATION OF THE BMP POTENTIAL

The 2D and 3D potentials constructed here, combined
with Schwenke’s fit of the H2 monomer deformation energy,46
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provide the most accurate representation of the He–H2 vdW
well to date. Thus, these potentials are well suited for com-
puting quantities that are insensitive to higher-energy regions
of the PES, such as bound state properties (Sec. VI), the sec-
ond virial coefficient (Sec. VII), and elastic or rovibrationally
inelastic scattering cross sections. However, our 2D and 3D
potentials have not been designed to reproduce the strongly
repulsive region of the PES (with Eint, 2B above 3000 K) or
the breaking of the H–H bond. On the other hand, the BMP
potential14 is suitable for all regions of the PES but, being
based on fairly low-level ab initio data (by today’s standards),
is not nearly as accurate as our potential in the vdW region.
Therefore, it is worthwhile to construct a potential that com-
bines the strengths of our vdW-region fit and of the all-region
BMP fit. To this end, we have generated a potential which we
will refer to as BMPmod. It has the same functional form as
the original BMP potential but has been fitted to our accurate
ab initio data in the vdW region (and to the same data as the
original BMP fit in all other regions).

The original BMP potential was fitted to 25 065 inter-
action energies: 16 703 points of the main grid, 3500 ran-
dom conformations, 1887 “H–He” conformations represent-
ing a relatively close-together H–He pair far away from the
remaining H atom, 830 “H–He+H” conformations with the
H–H bond broken but both He–H interactions nonnegligible,
and 2145 geometries in the vdW region with interaction ener-
gies computed previously or estimated from previous calcula-
tions. The latter set included 69 points computed by Tao13

(with rHH = 1.28, 1.449, and 1.618 bohrs), 374 “gen-Tao
vdW” points (with rHH = 1.28, 1.449, and 1.618 bohrs) rep-
resenting estimated interaction energies at the Ref. 13 level,
and 1702 points (with rHH ≤ 1.1 bohrs or rHH ≥ 1.8 bohrs)
generated from the lower-level Schaefer-Köhler (SK)11 and
(slightly modified) MR12 surfaces. Boothroyd et al.14 com-
puted 3500 additional random conformations that were not
used in the fit to provide an independent validation of the fit-
ted PES.

There are two slight inconsistencies between the formu-
las for the BMP potential published in Ref. 14 and the FOR-
TRAN code that computes this potential, given in the sup-
plementary material to that reference. First, the programmed
formula for FH(Ra) (FH(Rb)) is missing an overall factor of
1/Ra (1/Rb) compared to Eq. (9) in Ref. 14. Second, in the
n = 6 term of Eq. (16) of Ref. 14, the coefficient aD(6)
= −2.80333655 hartree bohr6 is inferred from the experimen-
tal H–He potential81 and not optimized. Additionally, seven
parameters (the ones in the expressions for Ad(r) and αd(r),
Eqs. (13) and (14) of Ref. 14) were not fitted to the ab ini-
tio data points, but to accurate asymptotic values of Thakkar
et al.76 The remaining 104 “true” fit parameters include the
“softening parameter of the switch function” that was fixed
at 6.0 in Eqs. (17) and (18) of Ref. 14 but is considered an
adjustable parameter (assumed to be the same in both equa-
tions). In our refitting process leading to the BMPmod po-
tential, we will adhere to the programmed BMP expressions
rather than the text of Ref. 14 to ensure consistency with the
existing applications of the BMP potential.

Our accurate ab initio data cover a range of rHH from 1.1
to 1.75 bohrs, encompassing all the Tao and “gen-Tao vdW”

points. Therefore, we fitted the BMPmod potential to a set of
26 270 interaction energies: compared to the original BMP fit-
ting set, our 1900 ab initio points were added while the 443
Tao and “gen-Tao vdW” points and 252 of the MR and SK
points (those with rHH = 1.1 bohrs) were removed. We fixed
the seven Ad(r) and αd(r) parameters at their asymptotics-
fitted BMP values and freely optimized the 104 “true” param-
eters including the “softening parameter.” We employed the
original BMP weights for all fit points other than ours. For our
energies, we computed the weights in the same way as for the
other vdW He–H2 points in Ref. 14, that is, as products of four
factors that depend on Eint, method, R, and rHH, respectively.
Taking into account the fact that our points are significantly
more accurate than the vdW points in the original BMP fit-
ting set, we assumed a method-dependent weighting factor of
5, compared to the values of 1 for the MR12 and SK11 points,
2 for the estimated “gen-Tao vdW” values, and 3 for the com-
puted points of Tao.13 Note that these weighting factors are
squared in the definition of the weighted RMSE adopted in
Ref. 14 and adhered to in this section. The weighted RMSE
was minimized with respect to the 104 “true” parameters us-
ing a Powell optimization routine from the SCIPY package82

and the original BMP parameters as a starting point. For con-
sistency, we have verified that the original BMP parameters
are close to optimal on the original BMP data set: specifi-
cally, a reoptimization of 104 “true” parameters only lowered
the weighted RMSE on the 25 065-point data set from 1.383
millihartree (consistent with Table II of Ref. 14) to 1.374 mil-
lihartree. At the same time, a significantly larger change in
parameters is needed to account for our accurate vdW-region
results: on the 26 270-point BMPmod data set, the original
BMP parameters lead to a weighted RMSE of 2.497 milli-
hartree and a reoptimization reduces this RMSE to 1.416 mil-
lihartree.

Different measures of the accuracy of the BMP and
BMPmod fits on several data sets are presented in Table V.
The upper part of this table lists the same quantities as
Table II in Ref. 14: the RMSE with full weights employed
in the BMP and BMPmod fitting process and the RMSE with
weights that depend on the total binding energy E (which in-
cludes the H–H binding energy) only

wE(E) =
{

1 E ≤ 0.2 hartree,

(0.2 hartree)/E E > 0.2 hartree.
(8)

As the values in Table V show, the change of RMSE on the
original BMP fitting set between the BMP and BMPmod fits
is minor. This can be viewed as a confirmation that the re-
fitting process has not adversely affected the accuracy of the
fit outside the vdW well. It is also encouraging that the BMP
potential expression is able to fit the BMPmod set including
our accurate vdW-region data to practically the same RMSE
as for the original BMP set. Thus, the refitted BMPmod po-
tential maintains the overall accuracy of BMP across the en-
tire PES. This statement is further supported by the BMP and
BMPmod potentials reproducing the additional 3500 random
configurations computed in Ref. 14 to virtually the same ac-
curacy (note that these configurations were not included in the
fitting set for either potential).
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TABLE V. Statistical measures of the accuracy of the original BMP14 and BMPmod potentials with respect to
different ab initio results. The upper part of the table pertains to total binding energies Vtot = Eint,2B + VH−H

(where the last term, the binding energy of the H2 molecule, is computed using the potential of Schwenke46), and
lists the full-weighted RMSE and energy-only-weighted RMSE (in millihartree) in accordance with Table II of
Ref. 14. The lower part of the table shows mean unsigned errors (MUE), mean unsigned relative errors (MURE),
and mean unsigned errors relative to the uncertainty (MUEσ ) for the Eint, 2B term alone using different sets of
data in the vdW He–H2 region. For this part, the accuracy of our 3D potential, fitted to the ab initio data computed
in this work, is shown for comparison.

Quantity BMP14 BMPmod Our 3D

Original BMP fitting set (25 065 points)
Full-weighted RMSE (millihartree) 1.383 1.433
Energy-weighted RMSE (millihartree) 1.320 1.328

BMPmod fitting set (26 270 points)
Full-weighted RMSE (millihartree) 2.497 1.416
Energy-weighted RMSE (millihartree) 1.289 1.297

Unfitted random BMP configurations (3500 points)
Full-weighted RMSE (millihartree) 1.413 1.411
Energy-weighted RMSE (millihartree) 1.400 1.398

Tao13 and “gen-Tao vdW” set (443 points)
MUE (Kelvin) 7.53 8.57 22.4
MURE (%) 6.30 8.18 9.28
Max. URE (%) 147.6 213.5 303.1

MR12 and SK11 points, rHH ≤ 0.9 or ≥1.8 bohrs (1450 points)
MUE (Kelvin) 10.8 10.8 10.7
MURE (%) 66.4 64.6 48.6
Max. URE (%) 15 070 14 781 7231

Our ab initio set (1900 points)
MUE (Kelvin) 5.88 3.87 0.10
MURE (%) 12.9 4.31 0.12
Max. URE (%) 4611 1543 46.1
MUEσ (σ units) 11.4 4.93 0.14
Max. UEσ (σ units) 38.0 45.0 0.83

A reliable reproduction of the interaction energies in the
vdW region is a more ambitious goal than a reliable repro-
duction of the total binding energies (relative to isolated H,
H, and He atoms) outside of the vdW well. Indeed, the two-
body vdW interaction energy is only a small fraction of the
total binding energy. Moreover, our new interaction energies
in the vdW region are substantially more accurate than the en-
ergies in the original BMP fitting set.14 Thus, as the lower part
of Table V illustrates, the relative errors of the original BMP
potential on our accurate two-body vdW interaction energies
are rather high, 13% (or 11σ , where σ is the estimated uncer-
tainty of the ab initio result) on the average. The BMPmod
reparameterization brings the errors down to 4.3% or 4.9σ on
the average, better but still far from perfect. Therefore, we
have included in the lower part of Table V the results for our
own 3D potential, fitted to the 1900 ab initio points as de-
scribed in Sec. IV. One can clearly see that the vdW-region
accuracy afforded by our 3D fit is unattainable for a full-PES
potential such as BMP or BMPmod and it is advantageous to
have both potentials available for different applications. Un-
derstandably, the original BMP potential is the best performer
on the Tao13 and “gen-Tao vdW” sets, now superseded by our
new ab initio data to which the other two potentials were fit-
ted. For the MR12 and SK11 data with the rHH distance further
from the equilibrium (≤0.9 bohr or ≥1.8 bohrs), no poten-
tial provides a good accuracy of interaction energies. Interest-

ingly, our 3D vdW-region fit actually describes the MR and
SK points slightly better than either BMP or BMPmod de-
spite the fact that it was not fitted to any points with compara-
ble values of rHH. Overall, the results of Table V confirm that
the goals of improving the accuracy of the vdW region and
maintaining the accuracy of the original BMP potential14 for
other regions of the PES have been fulfilled by our BMPmod
reparameterization.

VI. THE HE–H2 BOUND STATE

It is well known that the He–H2 van der Waals com-
plex, similar to the helium dimer, is an example of a quantum
halo system83 where the binding is so weak that the bound-
state wavefunction extends into very large intermolecular dis-
tances. Specifically, the complexes of 4He and 3He with para-
H2 exhibit a single bound state with a dissociation energy not
exceeding 0.1 K (the complexes with ortho-H2 are unbound
due to the rotational zero-point energy). The properties of the
lone bound state have been computed by several authors15–17

using the BMP potential14 (an older work84 utilized the MR
potential12). However, the energy E of the bound state and
the average intermolecular distance 〈R〉 are highly sensitive to
the details of the interaction potential. The errors of the BMP
potential in the vdW region (BMP underestimates the vdW
well depth by about 1 K) are likely large enough to produce a
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TABLE VI. Properties of the lone bound state of 4He–H2 and 3He–H2: the energy E and the average distance
〈R〉 and

√
〈R2〉,39 computed in this work and in previous studies. Our calculations employing the BMP and

BMPmod potentials were restricted to 2D by setting rHH = 1.448736 bohrs.

4He–H2
3He–H2

Ref. Potential E (cm−1) 〈R〉 (Å)
√

〈R2〉 (Å) E (cm−1) 〈R〉 (Å)
√

〈R2〉 (Å)

This work Our 2D − 0.06657 10.91 12.94 − 0.01489 19.42 24.65
This work BMP14 − 0.03812 13.20 16.07 − 0.00388 32.98 41.84
This work BMPmod − 0.05993 11.28 13.45 − 0.01169 21.35 27.26
84 MR12 − 0.0298 − 0.0016
15 BMP14 − 0.03634 13.42 − 0.02916a 28.55
16 BMP14 − 0.03640 − 0.00327
17 BMP14 − 0.0368 13.37 16.31 − 0.00348 32.92 41.59

aMost likely a misprint in Ref. 15: a value of −0.002916 would be very reasonable.

substantial error in the bound state energy. It is thus worth-
while to investigate the He–H2 bound-state properties using
our newly constructed potential.

A formally exact calculation of the bound-state energy
requires solving the nuclear Schrödinger equation in all three
dimensions including rHH. It is, however, much simpler to
solve for the bound state using a rigid-monomer V (R, θ ) po-
tential, and such an approximation can be expected to give
very reasonable results when rHH is fixed at its vibrationally
averaged value.78 We will follow this simplified approach
and locate the bound state using the algorithms and soft-
ware developed by Hutson.85, 86 Specifically, a system of
coupled differential equations corresponding to different
rotational quantum numbers is propagated radially (using the
diabatic modified log-derivative method of Manolopoulos87)
outwards and inwards to a common matching point in the
classically allowed region. Then, a search for zero eigenval-
ues of the matching matrix is used to locate the bound-state
energy. While the wavefunction of the complex is not com-
puted, expectation values such as 〈R〉 can be obtained by
finite-field techniques.88 The results are highly sensitive to
the reduced mass of the complex. The masses assumed here,
1.34056296391 and 1.20819695125 amu for 4He–1H2 and
3He–1H2, respectively, were obtained from the atomic masses
of the appropriate isotopes. The interaction potential V (R, θ )
is supplied as an expansion in even-l Legendre polynomials
Pl(cos θ ). This expansion terminates after P4 for our 2D and
3D potentials; for the BMP14 and BMPmod potentials studied
for comparison (with rHH fixed at 1.448736 bohrs), the terms
through P10 were taken into account.

The energies E and expectation values 〈R〉 and
√

〈R2〉
of the 4He–H2 and 3He–H2 bound states obtained using our
2D potential, BMP, and BMPmod are presented in Table VI
and compared to the literature data. The values that we com-
puted using the original BMP potential14 are in good agree-
ment with previous BMP-based calculations,15–17 indicating
that our rigid-H2 approximation is reliable (note, however,
that other calculations also employed some approximations
and may have used slightly different reduced masses). How-
ever, the differences between the bound state properties pre-
dicted by BMP and by the potentials constructed here are
quite dramatic. An error of about 1 K in the BMP well depth
(for rHH = 1.448736 bohrs) translates into an underestimation

of the bound state energy by a factor of about 1.7 for 4He–
H2 and nearly 4 for 3He–H2. The BMPmod potential (whose
error in the well depth is about 0.05 K) performs much bet-
ter although the bound-state energies are still somewhat un-
derestimated. Overall, the results in Table VI illustrate the
ultra-high demands imposed on the potential accuracy by a
very weakly bound state calculation. Similar, or even stricter,
demands have been observed for the 4He–4He dimer.89 Un-
der these circumstances, a dedicated vdW-region potential fit-
ted to accurate ab initio data, such as our 2D potential of
Sec. IV, should be recommended for computing the bound
state properties.

VII. SECOND VIRIAL COEFFICIENT

The knowledge of an analytic He–H2 potential enables
one to calculate a large variety of bulk properties of the
hydrogen-helium mixture such as the interaction second virial
coefficient, the binary diffusion coefficient, the viscosity co-
efficient, and several others. A multitude of experimental data
for these properties enables an extensive comparison that ben-
efits both theory (by helping quantify the residual errors of
the theoretical approaches) and experiment (by providing rea-
sonable baselines for future measurements and, in cases of
extremely high accuracy, enabling one to establish new, im-
proved thermophysical standards90). For the He–H2 complex,
a large variety of transport and relaxation properties has been
computed ab initio91 using the interaction potentials of Tao13

and Schaefer and Köhler,11 that is, the data used to anchor
the vdW-region behavior of the BMP potential.14 While an
extensive calculation of a large number of such properties is
beyond the scope of the present work, we employed our ac-
curate analytic 2D potential to compute the interaction sec-
ond virial coefficient BHe−H2 (T ) for a range of temperatures
T. The second virial coefficient was approximated by a sum
of its classical value B(0)(T) and the first quantum correction
B(1)(T). The latter contribution is a sum of three terms repre-
senting the radial, angular, and Coriolis corrections.92, 93 All
contributions were numerically integrated using a program
written by Heijmen93, 94 interfaced to our 2D potential rou-
tine. The reduced mass of the dimer was set to 1.33333 amu,
corresponding to the 4He–1H2 isotopomer of the complex.
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FIG. 2. The He–H2 interaction second virial coefficient as a function of temperature. The results with our 2D potential and with the original BMP14 and
BMPmod potentials (truncated to rHH = 1.448736 bohrs) are presented. The experimental data are taken from Refs. 97 (x), 98 (circles), and 96 (diamonds).

The rotational constant of H2 was set to 60.853 cm−1.95 The
second virial coefficients predicted by the BMP14 and BMP-
mod potentials (with rHH set to 1.448736 bohrs) were also
computed for comparison. The resulting B(T) curves are dis-
played in Fig. 2 which also contains a number of experimental
values96–98 with the uncertainties estimated in Ref. 91.

The approximation of the second virial coefficient by
its classical value plus the first quantum correction breaks
down for temperatures below 50 K as indicated by the ra-
dial term of B(1)(T) dominating the entire B(T). While a com-
plete formula for the second quantum correction B(2)(T) for
an atom-linear molecule complex is, to our knowledge, not
available, we tried approximating B(2)(T) by its isotropic part
using the known atom-atom expression.99, 100 The B(2)(T) cor-
rection amounts to −1.0 cm3 mol−1 at 50 K and progressively
becomes more negative as the temperature decreases. While
it is likely that an inclusion of the approximate B(2)(T) term
would improve the accuracy of the second virial coefficient in
the 25–50 K range, there are no experimental data to confirm
it, and neither B(0) + B(1) nor B(0) + B(1) + B(2) agree with ex-
periment below 25 K. For such low temperatures, a full inclu-
sion of quantum effects, for example, through a path-integral
Monte Carlo simulation,44 would be necessary to obtain re-
liable results. However, for the 50–500 K range displayed in
Fig. 2 the present treatment is fully adequate. While the dif-
ferences between our potential, BMP, and BMPmod are rela-
tively minor and all computed virial coefficients are within
experimental error bars, our potential gives the best agree-
ment with the actual measured values. It should be noted that
all three potentials give B(T) values that are lower (and more
accurate) than the SK potential11 employed in Ref. 91 which
is at, or slightly beyond, the upper limit of the experimental
error bars.

VIII. SUMMARY

We have obtained a vastly improved interaction potential
for the He–H2 van der Waals complex using a variety of state-
of-the-art electronic structure methods (CCSD(T), CCSDT,

FCI) and large correlation-consistent basis sets in conjunction
with midbond functions and CBS extrapolations. While the
relativistic effects on the interaction potential turned out to be
negligible, the inclusion of the diagonal Born-Oppenheimer
correction was necessary. At the near-minimum (rHH, R, θ )
= (1.448736 bohrs, 6.4 bohrs, 0◦) geometry, our best result for
the two-body He–H2 interaction energy amounts to −15.864
± 0.035 K while the result using the “production-level” bases
employed for all data points is −15.870 ± 0.065 K. These
values should be compared with the previous best result of
−14.90 K.13

The ab initio calculations have been performed for 1900
symmetry-unique He–H2 geometries corresponding to the
H–H bond length ranging from 1.1 to 1.75 bohrs. The re-
sulting interaction energies have provided data for fitting a
59-parameter analytical 3D potential. We have also fitted a
20-parameter rigid-monomer (2D) potential and reoptimized
104 parameters in the full-PES potential of Boothroyd, Mar-
tin, and Peterson14 to better reproduce our new accurate data
in the van der Waals region.

The ab initio He–H2 potentials constructed in this work
can be used to compute various spectroscopic and bulk prop-
erties of the hydrogen-helium mixture that can be compared
to experimental data. We made the first step in this direc-
tion and computed the lone bound vibrational state of 4He–
H2 and 3He–H2 and the interaction second virial coefficient
of the mixture. However, our new potentials are likely to pro-
vide accurate values of many other properties such as the dif-
fusion, viscosity, and thermal conductivity coefficients91 and
rovibrationally inelastic scattering cross sections.19 Moreover,
as highly accurate He–He and H2–H2 interaction potentials
have been available for a while,42, 101 this work eliminates the
weakest link in an ab initio description of hydrogen-helium
clusters, systems of broad interest ranging from spectroscopy
to low-temperature physics to astrophysics.
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