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Interaction energies for seven weakly bound dimers involving helium, argon, water, and methane
are computed using large correlation-consistent basis sets augmented with bond functions. The es-
timates of the coupled-cluster singles, doubles, and noniterative triples [CCSD(T)] complete basis
set limit are obtained using both the conventional approach and several variants of the explicitly
correlated CCSD(T)-F12 method. It is shown that both bond functions and the F12 approach sig-
nificantly speed up the convergence of the CCSD(T)/aug-cc-pVXZ interaction energies with the ba-
sis set cardinal number X. However, the extent of improvement provided by each technique varies
with the character of the interactions—the F12 method works best for polar, electrostatics-bound
dimers, while for dispersion-dominated complexes the addition of bond functions is more efficient.
The convergence rate afforded by different coupled-cluster variants is fairly consistent across the
entire attractive region of the potential curve, while the improvement provided by the F12 correction
increases along the repulsive wall. The use of large basis sets and the agreement between conven-
tional and explicitly correlated approaches allow us to assess the importance of different residual
approximations present in the popular CCSD(T)-F12 implementations. © 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4800981]

I. INTRODUCTION

It is well recognized that one-electron Gaussian ba-
sis sets, despite their immense popularity, afford only a
slow convergence of molecular electron correlation energies.
The underlying reason is the inability of one-electron func-
tions to reproduce the correct form of the many-electron
wavefunction when the distance between any two elec-
trons approaches zero (the interelectronic cusp1–4). In or-
der to enable such a reproduction, the many-electron func-
tion has to be equipped with terms that explicitly depend
on the distances rij between electrons i and j. When such
terms are present, that is, when the basis functions include
explicit correlation, the convergence of atomic and molec-
ular correlation energies improves dramatically. In fact, all
the most accurate energies and properties available for few-
electron systems (four electrons or less) have been computed
with some variant of the explicitly correlated approach—see
Ref. 5 for a recent review. In the last decade, an explic-
itly correlated treatment of larger systems has become pos-
sible thanks to a breakdown of the many-electron integrals
using the resolution-of-identity (RI) and density-fitting (DF)
techniques6, 7 and a fixed-amplitude Ansatz with the explicitly
correlated terms determined from cusp conditions rather than
optimized.8 Thus, the frozen-geminal (F12) explicitly corre-
lated approaches have made its way into the mainstream of the
electronic structure theory, with several different methods and
approximations now available in popular quantum-chemistry
codes.9, 10 The rapid development of the F12 methodology
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still continues—some very recent enhancements include an-
alytic energy gradients11, 12 and multireference methods for
systems with significant static correlation.13–15

It should be noted that the F12 technique, as currently
implemented in the “gold-standard” coupled-cluster approach
with singles, doubles, and noniterative triples [CCSD(T)]
method, involves several approximations that are not present
in conventional (not explicitly correlated) CCSD(T). First, a
CCSD(T)-F12 calculation relies inherently on density fitting
and thus may suffer from auxiliary basis incompleteness er-
rors. In fact, in the most popular and efficient variants, such as
CCSD(T)-F12a, CCSD(T)-F12b,16, 17 and CCSD(T)(F12*)18

(also termed CCSD(T)-F12c), no less than three, in general
different, auxiliary basis sets are required: a complementary
auxiliary basis set (CABS)19 for the RI approximation to
many-electron integrals, a DF set for the expansion of the
MP2-F12 pair functions, and a DF set for fitting the Fock ma-
trix used in MP2-F12 and in the CABS singles expression.16

Second, the F12 correlation factor (the form of the depen-
dence of pair functions on the interelectronic distance r12) is
assumed as F (r12) = − 1

β
exp(−βr12) and involves a parame-

ter β that is chosen a priori rather than optimized. On a related
note, several different Ansätze are possible in the MP2-F12
part of the calculation. The diagonal fixed-amplitude Ansatz
3C(FIX) (Ref. 8), assumed in the subsequent CCSD-F12 cal-
culations, has several desirable features including size consis-
tency and lack of geminal basis set superposition error.20, 21

On the other hand, this Ansatz is known to be quite sensi-
tive to the choice of the geminal exponent β.22, 23 Last but not
least, CCSD(T)-F12a, CCSD(T)-F12b, and CCSD(T)(F12*)
all involve some approximations in the CCSD-F12 part. The
(T) correction is in turn computed from the same formula
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as in conventional CCSD(T) and contains no F12 contri-
bution except for the indirect effect of the change in the
converged singles and doubles amplitudes. While both the
exact CCSD-F12 approach24 and the explicitly correlated
variant of the (T) correction25 have been developed, the com-
puter implementations of these approaches are not yet gen-
erally available and the algorithms are computationally more
demanding.

The efficiency of the CCSD(T)-F12a/b/c approaches in
reproducing complete-basis-set (CBS) limit CCSD(T) molec-
ular energies and properties has been confirmed in a number
of numerical studies.3, 4, 17, 26 The convergence of CCSD(T)-
F12 molecular correlation energies with the orbital basis set
is remarkable—explicitly correlated results in Dunning’s aug-
mented correlation-consistent double-zeta (aug-cc-pVDZ≡
aDZ) basis set27, 28 are as close to the CBS limit as conven-
tional CCSD(T) in aQZ or even a5Z. The results obtained us-
ing different variants of CCSD(T)-F12 are very similar so that
the a/b/c approximations are believed to be highly accurate.
To compensate for the lack of an F12 triples contribution, a
scaling approach has been suggested17

E∗
(T) = E(T) · Ecorr

MP2−F12

Ecorr
MP2

, (1)

where Ecorr
X denotes correlation energy at the X level of the-

ory, i.e., EX − ESCF.
The objective of the present work is to investigate the

basis set convergence of CCSD(T) and CCSD(T)-F12 nonco-
valent interaction energies. Weak noncovalent interactions are
one of the hardest challenges for ab initio quantum chemistry.
Interaction energies, especially those dominated by long-
range dynamical correlation (dispersion), are very hard to
converge with respect to both the theory level and the basis
set. As far as the former is concerned, the failure of standard
density functional theories to even qualitatively describe dis-
persion is well documented29, 30 and so is the substantial over-
estimation of dispersion energies by the MP2 method.31, 32

Numerous approaches have been proposed to overcome both
of these deficiencies,33–55 resulting, on the average, in sub-
stantially improved weak interaction energies. However, no
method below CCSD(T) has been demonstrated to maintain
high accuracy across the entire spectrum of weakly interact-
ing systems.56

As far as the basis set dependence of interaction en-
ergies is concerned, the convergence can usually be accel-
erated by CBS extrapolations57, 58 and/or the inclusion of
bond functions,59 but the description of the interelectronic
cusp remains a serious problem. Thus, the explicitly corre-
lated approach has a potential to significantly speed up ba-
sis set convergence of weak interaction energies. In fact,
the most accurate interaction potentials for few-electron sys-
tems, such as He2, have been obtained using the explic-
itly correlated approach with a large number of optimized
Gaussian-type geminals (GTGs).60–62 In the last few years,
multiple CCSD(T)-F12 studies of weak interaction energies
have been performed.63–74 However, most of these studies
were restricted to small and moderate basis sets for which,
as expected, the F12 approach provides highly superior con-
vergence. The notable exceptions are Refs. 63, 64, 68, and

74 where approximate CCSD(T)-F12 interaction energies for
Ne2, He2/Ne2, (CO2)2, and (H2O)2, respectively, have been
obtained in bases up to a5Z (or even a6Z64). While for the
water dimer the performance of CCSD(T)-F12 is, as we will
see below, particularly impressive, the remaining studies in-
dicated that the improvement over conventional CCSD(T) is
somewhat diminished in large bases (which was attributed to
the lack of an F12 treatment of triples63, 64). However, none of
these studies used bond functions.

In a recent study,72 we pointed out that, for a specific
example of rare gas dimers (He2 through Kr2), a larger con-
vergence speedup is provided by a simple addition of bond
functions than by the F12 approach. The addition of bond
functions improves the F12 results as well. Using virtu-
ally converged CCSD(T)/CBS interaction energies60, 61, 75, 76

as benchmarks, we demonstrated that, surprisingly, the con-
ventional CCSD(T) treatment in the largest available basis
sets is able to recover benchmark near-minimum interaction
energies to a better precision than approximate CCSD(T)-F12
in the largest basis sets available for that approach. There are
two reasons for this. First, the effects of the a/b/c approxi-
mations to CCSD-F12 and of the lack of an explicit F12 de-
pendence of triples (scaled or unscaled) become significant.
Second, the limited availability of suitable auxiliary basis sets
limits the choice of orbital bases for CCSD(T)-F12 (note that
auxiliary bases need to extend to higher angular momenta
than their parent orbital set).

One may argue that the rare-gas dimers investigated in
Ref. 72 present the worst-case scenario for CCSD(T)-F12. In-
deed, these systems are bound by dispersion which is sensitive
to the behavior of monomer wavefunctions at large distances
from the nuclei, in particular, in the region between the inter-
acting molecules. Moreover, the MP2 approach misses an un-
usually large portion of the interaction energy in this case76, 77

(note that MP2-F12 has been proven to be highly superior to
MP2 even for rare gas dimers20, 72). Thus, it is worthwhile to
extend the study of Ref. 72 to other small dimers with a vary-
ing importance of dispersion.

In this work, we compute CCSD(T) and CCSD(T)-
F12a/b/c interaction energies for seven dimers: He–H2O, Ar–
H2O, He–CH4, Ar–CH4, CH4–CH4, CH4–H2O, and H2O–
H2O. All complexes are investigated both at their van der
Waals minimum geometries and along the radial potential
energy curves passing through the minima. While accurate
interaction potentials have been previously constructed for
most of these systems,78–82 the CCSD(T)/CBS limit values
are not known to an accuracy similar as for the rare-gas dimers
(an exception is the water dimer for which a highly accurate
study74 was published when the current project was nearly
completed). Therefore, the range of basis sets employed here
(up to a6Z for CCSD(T) and a5Z for CCSD(T)-F12, with
bond functions included) allows us to pinpoint the CBS limit
precisely enough to compare the convergence of different ap-
proaches. Additionally, we study the effects of different ap-
proximations to CCSD(T)-F12, auxiliary bases, and values of
the F12 correlation factor to quantify the residual uncertain-
ties of the CCSD(T)-F12 approaches.

The remainder of this paper is structured as follows. In
Sec. II, we explain the methodology and list the pertinent
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computational details. In Sec. III, we present and analyze the
numerical results. Finally, in Sec. IV we summarize our find-
ings and present conclusions.

II. DETAILS OF THE COMPUTATIONAL PROCEDURE

All numerical calculations have been performed using the
MOLPRO2010.1 program.9 Most of the interaction energies
were obtained for the near van der Waals minima geometries
given in the supplementary material.83 The geometries for the
water and methane dimers were taken from Refs. 31 and 32,
respectively, and all the other geometries were optimized at
the CCSD(T)/aTZ level with frozen monomers. In addition
to the minimum geometries, we computed interaction ener-
gies along radial cross sections through the potential energy
surfaces passing through the minima. In other words, we var-
ied the distance between the central atoms of the monomers
with all the angles fixed relative to the line connecting the
monomers’ central atoms. All interaction energies were cor-
rected for basis set superposition error using the counterpoise
(CP) correction of Boys and Bernardi.84, 85 The core electrons
were not correlated.

The calculations employed two families of orbital ba-
sis sets: aug-cc-pVXZ27, 28 and cc-pVXZ-F12.86 We will use
short-hand notations aXZ and XZ-F12, respectively, for these
bases. Unless otherwise specified, the default aXZ/MP2FIT
auxiliary bases87, 88 (also known as aXZ-RI89), with X the
same as for the orbital set, were used to fit the MP2-F12
pair functions. For the RI approximation to many-electron
integrals, as well as for the density fitting of the Fock ma-
trix, we employed the same a6Z/MP2FIT* auxiliary basis90

for all orbital sets (the asterisk denotes that the k functions,
present in a6Z/MP2FIT for heavy atoms, were removed be-
cause of MOLPRO limitations). We have shown in Ref. 72
that the MOLPRO default selection for the aXZ orbital set, the
cc-pVXZ/JKFIT91 auxiliary basis, is sometimes far from ad-
equate for the RI approximation. We have carried out simi-
lar auxiliary basis tests for two dimers studied here, He–CH4

(in the aDZ, aTZ, aQZ, and a5Z orbital bases) and CH4–
H2O (in the aTZ orbital basis). The DF and RI sets included
aXZ/OPTRI92 (with the same X as the orbital basis as the
OPTRI set is tailored to a particular aXZ basis by construc-
tion) as well as the XZ/JKFIT91 and aXZ/MP2FIT87, 88 sets
with X larger or equal to the orbital basis cardinal number
(for He–CH4 in the a5Z orbital basis we additionally tested
the QZ/JKFIT and aQZ/MP2FIT sets). The helium XZ/JKFIT
sets are not available and the aXZ/OPTRI sets with the same X
were used instead. The resulting unscaled-triples CCSD(T)-
F12b interaction energies at the minima are displayed in
Figs. S1–S5 of the supplementary material.83 These figures
show that the errors incurred by choosing a suboptimal RI
basis set, quite dramatic for the neon dimer,72 are smaller
for He–CH4 and even less pronounced for CH4–H2O. Sur-
prisingly, the errors incurred by choosing a suboptimal DF
set for the Fock matrix become more significant. In partic-
ular, the aXZ/OPTRI sets, while decent in the RI context,
give the largest errors when employed for the density fit-
ting of the Fock matrix. On the other hand, the aXZ/MP2FIT

family exhibits superior basis set convergence in all three
contexts.

When midbond functions were used, the additional or-
bital basis functions, centered halfway between the central
atoms of the monomers, were chosen as hydrogenic functions
from the same aXZ or XZ-F12 set as for all atoms, and the
additional auxiliary basis functions for DF and RI were cho-
sen as described above. In other words, the midbond set varies
with X in accordance with the atomic basis sets. Other mid-
bond sets could also be used although the choice is limited by
the availability of auxiliary bases.72 The interaction energies
have been shown to be fairly insensitive to the exact place-
ment of the midbond center93 as long as it does not lie too
close to either monomer.94 We will add “M” to the basis set
symbol to indicate that midbond functions are included. The
addition of midbond increases the basis set size by 8%–22%
for the systems studied here, much less than the difference
between aXZ and a(X + 1)Z.

The standard diagonal fixed-amplitude Ansatz 3C(FIX)8

was employed throughout the present work, and the ap-
proximate variants investigated included CCSD(T)-F12a,
CCSD(T)-F12b,16, 17 and CCSD(T)(F12*)≡CCSD(T)-
F12c.18 We will present interaction energies obtained both
with and without the scaling of the triples contribution,
Eq. (1). In the former case, the scaling factor determined
for the dimer was also used for both monomers to maintain
size consistency, as suggested in Ref. 65. Unless stated
otherwise, the parameter β (GEM_BETA in MOLPRO) in the
F12 correlation factor was set to the values recommended in
Ref. 86, that is, 0.9, 1.0, and 1.1 a−1

0 for DZ-F12, TZ-F12,
and QZ-F12, respectively, and 1.1, 1.2, 1.4, and 1.4 a−1

0 for
aDZ, aTZ, aQZ, and a5Z, respectively.

The finite-basis results, both conventional and explicitly
correlated, were extrapolated to the CBS limit using the stan-
dard X−3 formula.57, 95 Specifically, the interaction energy ex-
trapolated from basis sets a(X − 1)Z and aXZ (this extrap-
olation will be denoted as a(X − 1, X)Z) is a sum of the
self-consistent field (SCF) contribution ESCF

int computed in the
larger aXZ set and the correlation contribution Ecorr

int (CBS) ob-
tained from the computed correlation energies Ecorr

int (a(X −
1)Z) and Ecorr

int (aXZ) as

Ecorr
int (CBS) = Ecorr

int (aXZ) +
(
1 − 1

X

)3

1 − (
1 − 1

X

)3

· (Ecorr
int (aXZ) − Ecorr

int (a(X − 1)Z)
)
. (2)

While the X−3 formula has been extensively tested in conven-
tional CCSD(T) calculations, it might not be the best choice
for CCSD(T)-F12 as, under favorable circumstances, the lat-
ter can be expected to converge as quickly as X−7.96, 97 Unfor-
tunately, the assumptions leading to the X−7 convergence (the
completeness of the orbital set for each angular momentum l
included in the basis, the completeness of all auxiliary sets,
and a genuine F12 treatment of triples) are far from satisfied
in our practical calculations. Therefore, we chose to stick to
the X−3 scheme, treating it as an empirically justified way to
improve basis set convergence.
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TABLE I. CCSD(T)/aXZ and CCSD(T)-F12b/aXZ interaction energies (in
cm−1) for the minimum geometry of the He–H2O complex as functions of
the basis set cardinal number X. The extrapolated value (rows “ext.”) in the
X column is computed using interaction energies in bases a(X − 1)Z and
aXZ. The midbond functions are chosen as hydrogenic functions from the
same aXZ orbital basis set. The benchmark CCSD(T)/CBS interaction energy
amounts to −34.34 ± 0.07 cm−1.

X

Basis D T Q 5 6

No midbond
CCSD(T) −21.17 −29.72 −32.55 −33.56 −33.98

ext. −33.39 −34.35 −34.49 −34.51
CCSD(T)-F12b −27.75 −32.24 −33.35 −33.91

ext. −34.13 −34.11 −34.48
CCSD(T)-F12b (scaled) −29.04 −32.82 −33.62 −34.05

ext. −34.41 −34.16 −34.49

With midbond
CCSD(T) −27.82 −33.55 −34.12 −34.23 −34.28

ext. −36.11 −34.56 −34.35 −34.34
CCSD(T)-F12b −30.43 −33.91 −34.19 −34.27

ext. −35.40 −34.39 −34.35
CCSD(T)-F12b (scaled) −31.94 −34.52 −34.47 −34.41

ext. −35.63 −34.42 −34.36

III. NUMERICAL RESULTS AND DISCUSSION

The near-minimum CCSD(T) and CCSD(T)-F12b in-
teraction energies for the seven dimers considered in this
work, computed in the aXZ basis sets with and without mid-
bond, are presented in Tables I–VII. The analogous CCSD(T)-
F12a/c results are given in Tables SI–SVII in the supplemen-
tary material83 which also contains graphical representations

TABLE II. CCSD(T)/aXZ and CCSD(T)-F12b/aXZ interaction energies (in
cm−1) for the minimum geometry of the Ar–H2O complex as functions of
the basis set cardinal number X. The extrapolated value (rows “ext.”) in the
X column is computed using interaction energies in bases a(X − 1)Z and
aXZ. The midbond functions are chosen as hydrogenic functions from the
same aXZ orbital basis set. The benchmark CCSD(T)/CBS interaction energy
amounts to −139.52 ± 0.12 cm−1.

X

Basis D T Q 5 6

No midbond
CCSD(T) − 79.53 −121.24 −134.51 −137.35 −138.39

ext. −137.15 −140.57 −139.68 −139.62
CCSD(T)-F12b − 110.74 −132.04 −136.99 −138.34

ext. −140.58 −140.18 −139.68
CCSD(T)-F12b (scaled) − 119.66 −135.95 −138.88 −139.49

ext. −142.39 −140.60 −140.05

With midbond
CCSD(T) − 99.68 −134.80 −138.20 −139.23 −139.40

ext. −145.47 −139.55 −139.91 −139.52
CCSD(T)-F12b − 121.71 −137.93 −138.64 −139.11

ext. −144.14 −139.03 −139.60
CCSD(T)-F12b (scaled) − 131.99 −142.01 −140.53 −140.24

ext. −145.60 −139.32 −139.93

TABLE III. CCSD(T)/aXZ and CCSD(T)-F12b/aXZ interaction energies
(in cm−1) for the minimum geometry of the He–CH4 complex as functions
of the basis set cardinal number X. The extrapolated value (rows “ext.”) in
the X column is computed using interaction energies in bases a(X − 1)Z
and aXZ. The midbond functions are chosen as hydrogenic functions from
the same aXZ orbital basis set. The benchmark CCSD(T)/CBS interaction
energy amounts to −29.43 ± 0.08 cm−1.

X

Basis D T Q 5 6

No midbond
CCSD(T) −19.61 −26.01 −27.94 −28.71 −29.08

ext. −28.59 −29.40 −29.52 −29.60
CCSD(T)-F12b −24.59 −27.60 −28.53 −29.01

ext. −28.84 −29.20 −29.52
CCSD(T)-F12b (scaled) −25.53 −27.99 −28.70 −29.11

ext. −28.99 −29.22 −29.52

With midbond
CCSD(T) −24.20 −28.54 −29.15 −29.29 −29.35

ext. −30.71 −29.56 −29.42 −29.43
CCSD(T)-F12b −27.20 −28.87 −29.24 −29.33

ext. −29.61 −29.50 −29.43
CCSD(T)-F12b (scaled) −28.24 −29.28 −29.42 −29.43

ext. −29.75 −29.51 −29.43

of the CCSD(T) and CCSD(T)-F12b data (Figs. S6–S12).
Tables I–VII display conventional CCSD(T) results for
X = D–6 and CCSD(T)-F12b results, with and without the
scaling of triples [Eq. (1)], for X = D–5.

The relative performance of CCSD(T) and CCSD(T)-F12
for the four dimers containing a rare gas atom, Tables I–
IV, is not much different for the one observed for rare gas

TABLE IV. CCSD(T)/aXZ and CCSD(T)-F12b/aXZ interaction energies (in
cm−1) for the minimum geometry of the Ar–CH4 complex as functions of
the basis set cardinal number X. The extrapolated value (rows “ext.”) in the
X column is computed using interaction energies in bases a(X − 1)Z and
aXZ. The midbond functions are chosen as hydrogenic functions from the
same aXZ orbital basis set. The benchmark CCSD(T)/CBS interaction energy
amounts to −141.16 ± 0.41 cm−1.

X

Basis D T Q 5 6

No midbond
CCSD(T) − 89.40 −121.97 −133.81 −137.92 −139.58

ext. −136.38 −142.83 −142.17 −141.85
CCSD(T)-F12b − 110.05 −130.13 −136.75 −139.45

ext. −138.62 −141.61 −142.28
CCSD(T)-F12b (scaled) − 118.02 −133.58 −138.45 −140.53

ext. −140.17 −142.02 −142.71

With midbond
CCSD(T) − 108.32 −135.75 −139.51 −140.46 −140.76

ext. −147.99 −142.31 −141.41 −141.16
CCSD(T)-F12b − 119.05 −137.73 −140.13 −140.70

ext. −145.71 −141.87 −141.29
CCSD(T)-F12b (scaled) − 127.99 −141.39 −141.83 −141.76

ext. −147.15 −142.15 −141.67
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TABLE V. CCSD(T)/aXZ and CCSD(T)-F12b/aXZ interaction energies (in
cm−1) for the minimum geometry of the H2O–H2O complex as functions
of the basis set cardinal number X. The extrapolated value (rows “ext.”) in
the X column is computed using interaction energies in bases a(X − 1)Z and
aXZ. The midbond functions are chosen as hydrogenic functions from the
same aXZ orbital basis set. The benchmark CCSD(T)/CBS interaction energy
amounts to −1745.0 ± 1.2 cm−1.

X

Basis D T Q 5 6

No midbond
CCSD(T) −1515.0 −1653.9 −1716.5 −1730.7 −1736.7

ext. −1715.3 −1752.9 −1745.8 −1744.8
CCSD(T)-F12b −1678.6 −1728.6 −1741.4 −1743.3

ext. −1750.2 −1751.3 −1745.8
CCSD(T)-F12b (scaled) −1698.4 −1737.2 −1745.5 −1745.5

ext. −1754.2 −1752.0 −1745.9

With midbond
CCSD(T) −1580.2 −1687.5 −1723.7 −1734.0 −1738.5

ext. −1730.3 −1749.3 −1744.5 −1744.8
CCSD(T)-F12b −1701.6 −1736.3 −1743.1 −1743.8

ext. −1751.1 −1749.2 −1745.0
CCSD(T)-F12b (scaled) −1723.5 −1745.0 −1747.1 −1745.9

ext. −1754.3 −1749.7 −1745.1

dimers.72 The results, both conventional and explicitly corre-
lated, obtained in midbond-containing bases are much better
converged than the results computed in the corresponding
midbondless bases. The convergence improvement result-
ing from the addition of midbond functions compares fa-
vorably to the improvement due to adopting the unscaled-
triples F12b approach. The scaling of the triples correction

TABLE VI. CCSD(T)/aXZ and CCSD(T)-F12b/aXZ interaction energies
(in cm−1) for the minimum geometry of the CH4–H2O complex as func-
tions of the basis set cardinal number X. The extrapolated value (rows “ext.”)
in the X column is computed using interaction energies in bases a(X − 1)Z
and aXZ. The midbond functions are chosen as hydrogenic functions from the
same aXZ orbital basis set. The benchmark CCSD(T)/CBS interaction energy
amounts to −354.8 ± 0.5 cm−1.

X

Basis D T Q 5 6

No midbond
CCSD(T) −230.6 −333.3 −347.8 −351.3 −352.8

ext. −365.9 −358.4 −355.1 −354.9
CCSD(T)-F12b −308.7 −349.0 −353.3 −354.1

ext. −364.7 −356.7 −355.0
CCSD(T)-F12b (scaled) −322.9 −354.9 −356.0 −355.5

ext. −367.1 −357.0 −355.0

With midbond
CCSD(T) −287.0 −339.9 −349.7 −352.3 −353.3

ext. −362.6 −356.8 −354.9 −354.8
CCSD(T)-F12b −327.1 −351.3 −353.9 −354.3

ext. −361.8 −356.0 −354.8
CCSD(T)-F12b (scaled) −342.4 −357.2 −356.6 −355.7

ext. −363.8 −356.3 −354.9

TABLE VII. CCSD(T)/aXZ and CCSD(T)-F12b/aXZ interaction energies
(in cm−1) for the minimum geometry of the CH4–CH4 complex as functions
of the basis set cardinal number X. The extrapolated value (rows “ext.”) in
the X column is computed using interaction energies in bases a(X − 1)Z and
aXZ. The midbond functions are chosen as hydrogenic functions from the
same aXZ orbital basis set. The benchmark CCSD(T)/CBS interaction energy
amounts to −187.30 ± 0.30 cm−1.

X

Basis D T Q 5 6

No midbond
CCSD(T) −149.60 −176.80 −183.64 −185.87 −186.60

ext. −189.33 −188.53 −188.04 −187.60
CCSD(T)-F12b −164.90 −182.07 −185.53 −186.68

ext. −189.35 −187.98 −187.84
CCSD(T)-F12b (scaled) −174.61 −185.71 −187.13 −187.52

ext. −190.43 −188.10 −187.88

With midbond
CCSD(T) −163.71 −183.65 −186.11 −186.76 −186.99

ext. −193.04 −187.81 −187.33 −187.29
CCSD(T)-F12b −171.80 −185.25 −186.66 −187.00

ext. −190.92 −187.61 −187.31
CCSD(T)-F12b (scaled) −181.95 −188.94 −188.25 −187.83

ext. −191.88 −187.67 −187.35

does improve the F12b results further, and for the Ar–H2O
and Ar–CH4 dimers the scaled-triples CCSD(T)-F12b/aXZ
results are just as good or slightly better than the conventional
CCSD(T)/aXZM values (for dimers containing helium the lat-
ter results are better converged except for X = D). The ben-
efits of midbond functions and of the F12b treatment can be
combined, leading to the most accurate CBS-limit estimates
for a given cardinal number X. When midbond functions are
present, the scaling of triples improves results for X = D,T
but mostly overshoots for X = Q,5, similar to what has been
observed for noble gas dimers.72

The hierarchy of different CCSD(T) approaches is com-
pletely different for the H2O–H2O and CH4–H2O dimers
(Tables V and VI, respectively). For these systems, the im-
provement provided by the F12b method is remarkable: the
CCSD(T)-F12b/aTZ water-water interaction energy is virtu-
ally as accurate as the conventional CCSD(T)/a5Z result, or
even the CCSD(T)/a6Z one if the triples correction is scaled.
The addition of midbond functions also improves the con-
vergence for all variants but the improvement is quite min-
imal. On the other hand, the CCSD(T) and CCSD(T)-F12b
basis set convergence for the methane dimer, Table VII, is
more similar to the complexes containing a noble gas atom.
Again, midbond functions improve the interaction energy
more than the unscaled-triples F12b approach (the scaled-
triples F12b treatment brings aXZ results very close to the
CBS limit but overcorrects the aXZM energies). Neverthe-
less, the improvement brought about by explicit correlation
is also substantial, with the largest-basis CCSD(T)/a6ZM and
CCSD(T)-F12b/a5ZM results providing virtually the same
accuracy.

Tables I–VII and Figs. S6–S12 also contain the re-
sults extrapolated to the CBS limit using the standard X−3
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algorithm. It is evident that the extrapolation improves the
convergence of both CCSD(T) and CCSD(T)-F12b interac-
tion energies. The latter success of the X−3 extrapolation
comes despite the fact that the F12 approach formally ex-
hibits different convergence of correlation energy (up to X−7

(Refs. 96 and 97)). The best illustration of this success is
the excellent agreement between the CCSD(T) and unscaled-
triples CCSD(T)-F12b results extrapolated from the aXZM
basis sets, leading to remarkably consistent conventional and
explicitly correlated estimates of the CBS limit—see below.
The midbondless aXZ bases lead to somewhat less accurate
and more erratic extrapolations. It is also worth noting that
the unscaled- and scaled-triples CCSD(T)-F12b interaction
energies become nearly identical upon the CBS extrapolation
despite the fact that the corresponding computed results ap-
proach the limit from two different sides.

As the CCSD(T) and CCSD(T)-F12 results obtained us-
ing bond functions are clearly better converged than those
without bond functions, we decided to base our benchmark
CCSD(T)/CBS values on two results E1, E2: the conventional
CCSD(T)/a(5,6)ZM value and the CCSD(T)-F12b/a(Q,5)ZM
result with unscaled triples. The uncertainty σ i of each Ei,
i = 1, 2, was taken as the absolute difference between the
extrapolated value and the one calculated using the larger
of the two bases (CCSD(T)/a6ZM or CCSD(T)-F12b/a5ZM).
Next, the two estimates were combined and the bench-
mark (E − σ , E + σ ) interval for the CCSD(T)/CBS in-
teraction energy was taken as the intersection of the inter-
vals (Ei − σ i, Ei + σ i) for i = 1, 2. The resulting CBS-
limit estimates E and their uncertainties σ are given in cap-
tions to Tables I–VII. The CCSD(T) and unscaled-triples
CCSD(T)-F12b estimates are consistent for all systems. The
same could not be said about the scaled-triples CCSD(T)-
F12b estimates (for Ar–CH4, the interval predicted by scaled-
triples CCSD(T)-F12b does not intersect with the CCSD(T)
interval)—as we have stated above, scaling overshoots for
bases containing midbond. It is worth noting that for the

dispersion-bound dimers (He–H2O, Ar–H2O, He–CH4, Ar–
CH4, and CH4–CH4) the CCSD(T)/a(5,6)ZM treatment pro-
vides a slightly more precise CBS limit (a narrower interval)
than the CCSD(T)-F12b/a(Q,5)ZM one. In other words, while
the F12b method obviously improves convergence, a larger
improvement can be achieved by utilizing bigger orbital bases
(and possibly bigger midbond bases, as shown in Ref. 72)
available for conventional CCSD(T). For the more strongly
bound H2O–H2O and CH4–H2O complexes, the CCSD(T)-
F12b/a(Q,5)ZM estimate is several times more precise than
the CCSD(T)/a(5,6)ZM one. For these systems, conventional
CCSD(T) cannot match the CCSD(T)-F12b/a(Q,5)ZM accu-
racy in any feasible basis set.

The benchmark interaction energies obtained as de-
scribed above allow us to compare the accuracy of different
methods and basis sets in reproducing the CCSD(T)/CBS lim-
its for the seven van der Waals minima. To this end, we con-
sidered the mean unsigned errors (MUE, in cm−1) and mean
unsigned relative errors (MURE, in percent). The values of
MUE and MURE obtained for different approaches (conven-
tional or F12), different F12 variants, and different basis sets
(aXZ with and without midbond and/or CBS extrapolation)
are listed in Tables VIII and IX, respectively. Analogous sta-
tistical measures for the XZ-F12 and XZ-F12M basis set fam-
ilies are given in Table SVIII in the supplementary material83

and show that these basis sets are, on the average, substan-
tially inferior to the aXZ and aXZM sets for the same X. As
the XZ-F12 set extends only to X = Q, it cannot be used to
converge CCSD(T)-F12 interaction energies to an extent com-
parable to the best results from the CCSD(T)-F12/aXZ and/or
CCSD(T)-F12/aXZM treatments.

While all six variants of the F12 method (a/b/c ap-
proximations to CCSD-F12, scaled or unscaled triples) pro-
vide improvement over conventional CCSD(T), the differ-
ences between variants are unexpectedly large. For exam-
ple, the scaled-triples CCSD(T)-F12a variant is by far the
best one at the aDZM level but the least accurate one

TABLE VIII. Mean unsigned errors (MUE, in cm−1) of different CCSD(T)/CCSD(T)-F12 variants and basis sets. The errors are averaged over the van der
Waals minimum geometries for the seven dimers considered in this work. The benchmark CCSD(T)/CBS interaction energies have been obtained as described
in Sec. III.

Computed results, X = Extrapolated results

Method Basis D T Q 5 6 (D,T) (T,Q) (Q,5) (5,6)

CCSD(T) aXZ 75.24 24.09 7.83 3.73 2.06 7.40 2.21 0.47 0.25
CCSD(T) aXZM 48.67 12.56 4.45 2.20 1.28 6.30 1.19 0.18 0.04
CCSD(T)-F12a aXZ 22.11 3.77 1.23 0.59 4.26 2.04 0.73
CCSD(T)-F12a aXZM 12.04 0.46 0.68 0.42 5.11 1.34 0.24
CCSD(T)-F12a (scaled) aXZ 13.14 2.08 1.91 1.16 5.50 2.31 0.88
CCSD(T)-F12a (scaled) aXZM 2.53 3.89 2.40 1.37 6.45 1.47 0.35
CCSD(T)-F12b aXZ 29.46 7.14 2.24 0.97 3.08 1.49 0.43
CCSD(T)-F12b aXZM 18.97 2.90 0.81 0.43 3.87 1.01 0.03
CCSD(T)-F12b (scaled) aXZ 20.49 3.37 0.95 0.37 4.13 1.76 0.57
CCSD(T)-F12b (scaled) aXZM 9.07 1.01 0.94 0.52 5.21 1.12 0.16
CCSD(T)-F12c aXZ 29.00 7.35 2.75 1.33 2.89 0.77 0.24
CCSD(T)-F12c aXZM 18.76 3.33 1.33 0.78 3.17 0.46 0.14
CCSD(T)-F12c (scaled) aXZ 20.27 3.60 1.06 0.38 3.95 1.05 0.38
CCSD(T)-F12c (scaled) aXZM 9.14 0.91 0.43 0.18 4.56 0.58 0.18
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TABLE IX. Mean unsigned relative errors (MURE, in percent) of different CCSD(T)/CCSD(T)-F12 variants and basis sets. The errors are averaged over the
van der Waals minimum geometries for the seven dimers considered in this work. The benchmark CCSD(T)/CBS interaction energies have been obtained as
described in Sec. III.

Computed results, X = Extrapolated results

Method Basis D T Q 5 6 (D,T) (T,Q) (Q,5) (5,6)

CCSD(T) aXZ 31.39 9.81 3.52 1.59 0.80 2.37 0.59 0.30 0.26
CCSD(T) aXZM 18.53 3.14 1.00 0.45 0.26 3.53 0.43 0.08 0.00
CCSD(T)-F12a aXZ 11.85 2.96 1.16 0.44 1.39 0.63 0.37
CCSD(T)-F12a aXZM 6.08 0.35 0.20 0.12 2.47 0.33 0.05
CCSD(T)-F12a (scaled) aXZ 7.66 1.73 0.94 0.46 1.72 0.71 0.46
CCSD(T)-F12a (scaled) aXZM 1.62 1.77 0.97 0.56 3.11 0.38 0.12
CCSD(T)-F12b aXZ 15.29 4.41 1.78 0.77 1.33 0.50 0.28
CCSD(T)-F12b aXZM 9.43 1.33 0.45 0.22 2.07 0.29 0.02
CCSD(T)-F12b (scaled) aXZ 11.10 2.65 1.06 0.39 1.44 0.58 0.38
CCSD(T)-F12b (scaled) aXZM 4.76 0.64 0.38 0.25 2.71 0.32 0.11
CCSD(T)-F12c aXZ 16.15 4.91 2.07 0.95 1.30 0.40 0.22
CCSD(T)-F12c aXZM 10.21 1.90 0.74 0.39 1.60 0.21 0.03
CCSD(T)-F12c (scaled) aXZ 12.07 3.17 1.26 0.49 1.36 0.48 0.31
CCSD(T)-F12c (scaled) aXZM 5.67 0.47 0.15 0.10 2.26 0.25 0.07

in the aQZM and a5ZM bases or if the CBS extrapola-
tion is performed. On the other hand, the unscaled-triples
CCSD(T)-F12a/aXZM approach, while not particularly well
converged at the X = D level, is one of the best variants
from X = T on. For the largest, a5ZM basis set, the scaled-
triples CCSD(T)-F12c method provides the best accuracy and
unscaled-triples CCSD(T)-F12a comes a close second (a vir-
tually the same ranking was observed in our earlier study
on rare gas dimers72). The presence of midbond functions
reduces the MURE of both conventional CCSD(T) and all
variants of CCSD(T)-F12 except for the aforementioned
scaled-triples CCSD(T)-F12a approach. When the CBS ex-
trapolation is performed, the results are, on the average, closer
to the CBS limit and the differences between various F12 vari-
ants and between CCSD(T)-F12 and conventional CCSD(T)
are substantially diminished. However, the CCSD(T)/CBS es-
timates obtained from the aXZM sequence are more accurate
than those from the aXZ one for all (T,Q), (Q,5), and (5,6)
extrapolations.

The two lowest values of MUE and MURE in Tables VIII
and IX are provided by the CCSD(T)/a(5,6)ZM and unscaled-
triples CCSD(T)-F12b/a(Q,5)ZM extrapolations. This result
is nothing more than a consequence of how the benchmark in-
teraction energies were established using precisely these two
approaches. The fact that the two extrapolations are so close to
each other (the MUE of one method with respect to the other
one is just 0.07 cm−1, the sum of the two MUE values from
Table VIII) is, however, highly encouraging. Obviously, this
agreement might be partially accidental and other F12b/c vari-
ants might give a(Q,5)ZM extrapolated results that are at least
as close to the true CBS limit. Nevertheless, the agreement
of the benchmark with the CCSD(T)/a(5,6)ZM, CCSD(T)-
F12b/a(Q,5)ZM, and CCSD(T)-F12c/a(Q,5)ZM interaction
energies (with or without the scaling of triples) to better than
0.2 cm−1 (MUE) and about 0.1% (MURE) is a strong indica-
tor that the benchmarks adopted by us are also converged to
at least 0.2 cm−1 and 0.1%. Thus, all our remarks regarding

the relative performance of different variants should be statis-
tically significant.

The properties of the conventional and explicitly corre-
lated approaches can be understood by looking at the CCSD
and triples interaction energy contributions separately. Ac-
cordingly, Table X presents the MURE for the CCSD/CCSD-
F12 interaction energies, the (T) triples interaction energy
contributions with and without scaling and, for complete-
ness, the MP2/MP2-F12 results. Just like in Tables VIII and
IX, the statistical averaging has been performed over the van
der Waals minima for the seven dimers considered here. The
benchmark values have been obtained in the same way as
for the entire CCSD(T) interaction energy, that is, using the
a(5,6)ZM extrapolation from the conventional results and the
a(Q,5)ZM one from the F12b results. The confidence inter-
vals provided by these two extrapolations do intersect for all
methods and systems. Interestingly, at the MP2 and CCSD
levels, the F12 approach provides a more precise CBS esti-
mate, with the F12 confidence interval contained entirely in
the conventional interval in all cases but two. At the (T) level,
the opposite is true: the conventional confidence intervals are
always contained within the unscaled F12a≡F12b ones. If the
triples correction were scaled, the resulting confidence inter-
vals would not intersect with the conventional (T) intervals
for some systems.

Similar to the case of the rare gas dimers,72 the basis set
convergence of the MP2-F12 approach is highly superior to
that of conventional MP2. Extrapolation improves results sig-
nificantly and alleviates a large part of the MP2 deficiency as
compared to MP2-F12. At the CCSD level, the F12 interac-
tion energies are more accurate than the conventional results,
but the three variants lead to dramatically different perfor-
mance. For double-zeta basis sets, CCSD-F12a is the most
accurate variant by far, but it is the least accurate variant by
far for the aTZM, aQZM, and a5ZM bases (where CCSD-
F12b performs best and CCSD-F12c is also very good).
Clearly, the CCSD-F12a approach, involving more drastic
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TABLE X. Mean unsigned relative errors (MURE, in percent) of the conventional and explicitly correlated MP2, CCSD, and (T) contributions to the interaction
energy. The errors are averaged over the van der Waals minimum geometries for the seven dimers considered in this work. The benchmark CBS values have
been obtained as described in Sec. III. The F12a and F12b triples corrections are identical.

Computed results, X = Extrapolated results

Method Basis D T Q 5 6 (D,T) (T,Q) (Q,5) (5,6)

MP2 aXZ 32.83 11.52 4.70 2.36 1.32 3.27 0.37 0.15 0.18
MP2 aXZM 20.48 4.86 1.94 0.99 0.60 2.21 0.18 0.13 0.08
MP2-F12 aXZ 10.04 3.05 1.49 0.64 1.16 0.44 0.23
MP2-F12 aXZM 5.65 0.89 0.39 0.19 1.31 0.12 0.01

CCSD aXZ 31.65 9.88 3.47 1.55 0.76 2.51 0.62 0.29 0.28
CCSD aXZM 17.44 2.59 0.76 0.34 0.20 3.85 0.41 0.05 0.01
CCSD-F12a aXZ 6.71 1.51 0.89 0.44 1.57 0.69 0.40
CCSD-F12a aXZM 1.57 1.47 0.77 0.40 2.67 0.31 0.07
CCSD-F12b aXZ 11.09 2.89 1.18 0.45 1.26 0.52 0.29
CCSD-F12b aXZM 5.65 0.37 0.13 0.06 2.16 0.26 0.02
CCSD-F12c aXZ 11.81 3.31 1.42 0.61 1.24 0.43 0.26
CCSD-F12c aXZM 6.24 0.64 0.24 0.16 1.76 0.20 0.08

(T) aXZ 32.12 9.91 3.78 1.75 0.93 1.83 0.70 0.37 0.21
(T) aXZM 24.00 5.29 1.86 0.85 0.49 2.58 0.64 0.21 0.00
(T)-F12ab aXZ 34.33 11.03 4.36 2.10 2.04 0.52 0.28
(T)-F12ab aXZM 26.01 6.30 2.37 1.12 1.99 0.51 0.18
(T)-F12ab (scaled) aXZ 12.38 2.59 1.19 0.62 2.82 1.24 0.69
(T)-F12ab (scaled) aXZM 2.81 3.31 1.97 1.27 5.37 0.99 0.54
(T)-F12c aXZ 35.94 11.99 4.85 2.37 2.43 0.43 0.23
(T)-F12c aXZM 27.84 7.32 2.85 1.39 1.32 0.44 0.15
(T)-F12c (scaled) aXZ 14.54 3.08 1.12 0.53 2.50 1.13 0.65
(T)-F12c (scaled) aXZM 4.05 2.19 1.46 0.99 4.80 0.92 0.51

approximations than CCSD-F12b and CCSD-F12c, benefits
from some cancellation of errors in small basis sets. This can-
cellation seems to be quite systematic across different sys-
tems, as indicated by the surprisingly good performance of the
CCSD(T)-F12a/aDZ approach found in earlier studies.17, 73

The lack of a proper explicitly correlated contribution to
triples25 is the obvious reason why the relative performance of
various variants of the (T) correction is entirely different than
for MP2 and CCSD. The F12a/b/c corrections to doubles am-
plitudes are not designed to improve the basis set saturation
of the perturbative triples expression, so they do not improve
it—in fact, as the results in Table X indicate, they worsen
it slightly but systematically. As demonstrated previously,65

the scaling in Eq. (1) results in a significant improvement of
the (T) contribution to the interaction energy, at least for the
aXZ basis sets. For the aXZM bases, scaling does make the re-
sults more accurate but the large-X improvement is limited as
the procedure overshoots. This leads to a surprising situation
where the scaled large-basis triples corrections are more accu-
rate without midbond. However, the accuracy gain afforded by
midbond functions at the CCSD-F12 level more than makes
up for the worsening of triples. Finally, it is worth noting that
the scaling of triples does not work well for the extrapolated
results—CBS extrapolation improves unscaled-triples correc-
tions dramatically, while scaled-triples corrections are hardly
improved or even worsened.

In an earlier analysis,72 we came to a conclusion that the
residual deviations of large-basis CCSD(T)-F12 interaction
energies from the CBS limit are mainly due to the F12a/b/c

approximations to CCSD and the lack of a rigorous explicitly
correlated treatment of triples. The results of Table X gener-
ally support this conclusion. However, if one stays away from
the least accurate CCSD-F12a approximation, the inaccuracy
of triples, with or without scaling, dominates over the inaccu-
racy of CCSD-F12. This behavior is seen from the MURE val-
ues in Table X and, even more clearly, from the correspond-
ing absolute errors (MUE) in Table SIX in the supplementary
material.83 The mean errors at the CCSD-F12b and CCSD-
F12c levels are actually quite similar to those of MP2-F12
and to each other, indicating that the accuracy of the F12b
and F12c approximations is high and systematic. While the
triples contribution, with or without scaling, is the least con-
verged part of the CCSD(T)-F12 interaction energy, the rel-
ative performance of different variants is strongly dependent
on the degree to which the errors between different contribu-
tions cancel each other. This cancellation is best exemplified
by the formally most approximate unscaled-triples CCSD(T)-
F12a approach, cf. Tables VIII–IX.

The benchmark interaction energies obtained here enable
us to revisit the choice of the exponent α = 3.0 in the X−α

CBS extrapolations, both for the total CCSD(T)-F12 inter-
action energy and for its CCSD-F12 and (T) contributions
(which may exhibit different convergence23, 58). To this end,
we found the exponents αopt that, when employed in the ex-
trapolations of the correlation parts of the CCSD(T)-F12 and
CCSD-F12 interaction energies, and of the (T) interaction
energy contribution, minimize the MURE for the seven van
der Waals minima. The optimal exponents and the resulting
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MURE values are shown in Table SX in the supplementary
material.83 In a few cases αopt turned out to be infinite, that is,
the nonextrapolated results are more accurate than any extrap-
olation. The origin of the unusually large and/or infinite opti-
mal exponents is typically the nonextrapolated results cross-
ing onto the other side of the CBS limit value. This happens
mostly for the (D,T) extrapolations as the computed interac-
tion energies become more monotonic for larger X.

Table SX shows that the unscaled (T) corrections in
CCSD(T)-F12 interaction energies exhibit near-X−3 conver-
gence in all cases (the extrapolated scaled (T) corrections are
substantially worse and the associated optimal exponents are
quite erratic). On the other hand, αopt for CCSD-F12 and
CCSD(T)-F12 are quite similar, especially for the (Q,5) ex-
trapolations. These exponents increase with X for the aXZ
bases and decrease with X for the aXZM ones. In particular,
at the (Q,5) level, the optimal extrapolation exponents for the
aXZM bases are close to 3.0 (although the MURE are so small
that the uncertainty of the benchmark itself might be a cru-
cial factor in this case), while for the aXZ sets they are some-
what larger, around 3.8. The overall conclusion of Table SX
is that, once the initial nonmonotonic convergence has passed,
the optimal extrapolation exponents are all fairly close to 3.0.
Thus, while one could put more effort into a careful, basis
set-specific and midbond-specific optimization of these expo-
nents, the expected improvement is less than for molecular
correlation energies (for which αopt exhibit more diversity23)
and we chose to stick to the well established X−3 scheme.

A. Potential energy curves

The largest calculations that we have carried out for the
van der Waals minima (Tables I–VII) would be too compu-
tationally demanding to extend to the entire potential energy
curves. For the sake of consistency, we restricted the poten-
tial curve calculations for all systems to the aXZ and aXZM
basis sets with X = D,T,Q. Therefore, we need to determine
how to select benchmark interaction energies for points other
than the minima. Tables VIII and IX show that, if one re-
stricts the values of X to D, T, Q, (D,T), and (T,Q), the lowest
MUE and MURE for the seven minima amount to 0.43 cm−1

and 0.15%, respectively, and they are provided by the same
CCSD(T)-F12c/aQZM approach with scaled triples. Thus, the
scaled-triples CCSD(T)-F12c/aQZM interaction energies will
be used as benchmarks for the entire potential energy curves.

The performance of the CCSD(T) and CCSD(T)-F12
variants for the He–CH4, CH4–CH4, and H2O–H2O dimer
curves is presented in Figs. 1–3. The analogous graphs for
the remaining four complexes are given in the supplementary
material.83 The purpose of these figures is to illustrate the
relative performance of different approaches as a function
of the intermolecular distance R. Such an illustration for the
entire range of R is not provided by either absolute errors
(which decay quickly with R) or relative errors (which are
greatly enhanced close to the point where the interaction
energy crosses zero). It is more meaningful to arbitrarily
select one of the approximate methods as a reference and
express all interaction energy errors (with respect to the
scaled-triples CCSD(T)-F12c/aQZM benchmark) relative to

the errors of the reference approach. In our case, we selected
the conventional CCSD(T)/aQZ treatment (which lies in
the middle of the pack among the methods tested) as the
reference and scaled the errors in Figs. 1–3 and S13–S16 by
the reference errors at the same R.

The relative CCSD(T) and CCSD(T)-F12 performance
across different regions of the interaction varies with the type
of the complex. For the dispersion-bound He–CH4 system,
the most important conclusion from Fig. 1 is the same as for
the He–He curve investigated in Ref. 72: the advantage of the
F12 approach over conventional CCSD(T) substantially in-
creases for short intermolecular distances where the unscaled-
triples CCSD(T)-F12b treatment is always better than
conventional CCSD(T) in the same basis set and the scaled-
triples version is still better. On the other hand, the ordering
of CCSD(T) and unscaled-triples CCSD(T)-F12b is in most
cases reversed in the asymptotic region. The scaled-triples
CCSD(T)-F12b approach remains superior to conventional
CCSD(T) in that regime but its advantage is not nearly as
large as for small R.

The CBS-extrapolated He–CH4 potential energy curves,
presented in the lower panel of Fig. 1, show that the (D,T) ex-
trapolations, both conventional and explicitly correlated, are
fairly inaccurate. On the other hand, all (T,Q) extrapolations
perform well and provide a substantial improvement over the
reference CCSD(T)/aQZ method across the entire range of
R. In fact, the conventional and explicitly correlated results
provide very similar accuracy when the (T,Q) extrapolation is
performed. Moreover, similar to what has been found for the
minima, the unscaled-triples and scaled-triples extrapolations
give nearly identical values. The relative deviations of poten-
tial energy curves for the methane dimer, Fig. 2, are fairly
similar to the helium-methane case except for the fact that the
CCSD(T)-F12b/a(D,T)Z and CCSD(T)-F12b/a(D,T)ZM ex-
trapolations no longer suffer from a dramatic breakdown at
large R.

In the case of the water dimer (Fig. 3), the errors of
different approaches relative to the CCSD(T)/aQZ error are
fairly constant. Thus, the advantage of CCSD(T)-F12b over
CCSD(T) is just as striking as for the minimum: the most
accurate conventional results, CCSD(T)/aQZM, are (slightly)
worse than the least accurate F12 results, unscaled-triples
CCSD(T)-F12b/aTZ. The benefits of adding midbond func-
tions, although undeniable for both CCSD(T) and CCSD(T)-
F12, are smaller than for the less polar dimers so that the re-
sults in the aQZ basis are better than the aTZM ones. The CBS
extrapolation makes conventional CCSD(T) results compet-
itive to CCSD(T)-F12, but only at the (T,Q) level. The po-
tential energy curves for the remaining four dimers, shown
in Figs. S13–S16 in the supplementary material,83 are fairly
similar to either the He–CH4 and CH4–CH4 case (He–H2O,
Ar–H2O, and Ar–CH4) or to the H2O–H2O case (CH4–H2O).
The occasional larger errors at the largest R are just an artifact
of the reference CCSD(T)/aQZ calculations being particularly
close to the benchmark in this case.

As mentioned earlier, neither MUE nor MURE is a good
statistical measure of the performance of different approaches
for the entire potential energy curves. Therefore, we fol-
lowed the idea of Ref. 98 and computed the median unsigned
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FIG. 1. Performance of the CCSD(T) and CCSD(T)-F12b approaches for the radial potential energy curve of the He–CH4 complex passing through the global
minimum. The values displayed are relative to the benchmark interaction energy (estimated from the scaled-triples CCSD(T)-F12c/aQZM calculation) and
normalized by the absolute deviation of the CCSD(T)/aQZ interaction energy from the benchmark at a given intermolecular distance R.

relative errors (which will be denoted by MeURE to distin-
guish them from the regular MURE) for all methods and
basis sets (one should note that other, properly weighted mod-
ifications of MURE would also be suitable99). The results
are collected in Table XI. The values of MeURE are highly
similar to the MURE for the seven van der Waals minima
(Table IX) despite comparing to a different, less precise
benchmark. In other words, the relative performance of vari-
ous CCSD(T)/CBS approximations at the minima is a reliable

indicator of the relative performance for other intermonomer
separations. The scaled-triples CCSD(T)-F12a/aXZM treat-
ment is again the best one for X = D and the worst out of the
six F12 variants for X = Q. On the other hand, the CCSD(T)-
F12b and CCSD(T)-F12c approaches perform quite similar
to each other and in general different from CCSD(T)-F12a.
This observation is consistent with both the formal hierarchy
of approximations to CCSD-F1216–18 and the behavior of the
CCSD-F12 interaction energies shown in Table X.
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FIG. 2. Performance of the CCSD(T) and CCSD(T)-F12b approaches for the radial potential energy curve of the CH4–CH4 complex passing through the
global minimum. The values displayed are relative to the benchmark interaction energy (estimated from the scaled-triples CCSD(T)-F12c/aQZM calculation)
and normalized by the absolute deviation of the CCSD(T)/aQZ interaction energy from the benchmark at a given intermolecular distance R.

B. Sensitivity of interaction energies to the geminal
exponent β

In this subsection we investigate how the CCSD(T)-F12
interaction energies depend on the geminal exponent β in the
F12 correlation factor. The values of β recommended for dif-
ferent basis sets23, 86 have been obtained by variationally min-
imizing the MP2-F12 correlation energy for a set of model
atoms and molecules. The value of β determines the size of
the correlation hole modeled by the geminal100—the larger

the value of β, the tighter the correlation hole. The correlation
hole associated with dispersion interactions is likely highly
diffuse and smaller values of β might be preferable. There-
fore, we decided to investigate how the choice of β influences
the MP2-F12 and CCSD(T)-F12b interaction energies for two
model systems, He–CH4 and CH4–H2O. The pertinent results
are displayed in Fig. 4. As observed before,8, 101, 102 the de-
pendence of correlation energy on β is particularly strong
for small basis sets for which the orbital basis leaves a lot
of room for improvement. Larger basis sets, especially the
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FIG. 3. Performance of the CCSD(T) and CCSD(T)-F12b approaches for the radial potential energy curve of the H2O–H2O complex passing through the
global minimum. The values displayed are relative to the benchmark interaction energy (estimated from the scaled-triples CCSD(T)-F12c/aQZM calculation)
and normalized by the absolute deviation of the CCSD(T)/aQZ interaction energy from the benchmark at a given intermolecular distance R.

ones containing midbond functions, lead to nearly constant
interaction energies over a wide range of β. The comparison
of the left (MP2-F12) and right (CCSD(T)-F12b) panels of
Fig. 4 shows that the two approaches result in very sim-
ilar β dependence which validates the optimization of β

at the MP2-F12 level.23, 86 The values of β that minimize
the MP2-F12 interaction energy are indeed lower than the
commonly recommended values: in fact, they are close
to 1.0 a−1

0 for all systems and basis sets displayed in
Fig. 4.

It should be noted that, in the most popular implementa-
tions of MP2-F12 and CCSD(T)-F12, the Slater-type correla-
tion factor is represented by a fit to a fixed number NGTG of
GTGs,21

e−βr12 ≈
NGTG∑

i=1

cie
−ξi r

2
12 , (3)

where, in general, both the coefficients ci and the exponents
ξ i are fitted parameters. This fitting obviously affects the
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TABLE XI. Median unsigned relative errors (MeURE, in percent) of different CCSD(T)/CCSD(T)-F12 variants
and basis sets for the radial interaction energy curves of all seven complexes. The benchmark CCSD(T)/CBS
interaction energies have been computed at the scaled-triples CCSD(T)-F12c/aQZM level.

Computed results, X = Extrapolated results

Method Basis D T Q (D,T) (T,Q)

CCSD(T) aXZ 26.33 8.48 3.12 1.84 0.51
CCSD(T) aXZM 16.43 2.66 0.92 2.89 0.40
CCSD(T)-F12a aXZ 12.77 3.21 1.01 0.95 0.50
CCSD(T)-F12a aXZM 6.04 0.34 0.07 2.39 0.32
CCSD(T)-F12a (scaled) aXZ 8.75 1.19 0.74 1.18 0.52
CCSD(T)-F12a (scaled) aXZM 1.78 1.55 0.81 2.91 0.29
CCSD(T)-F12b aXZ 15.42 4.47 1.98 1.23 0.41
CCSD(T)-F12b aXZM 9.07 1.32 0.46 2.00 0.25
CCSD(T)-F12b (scaled) aXZ 11.69 2.63 0.81 1.02 0.45
CCSD(T)-F12b (scaled) aXZM 4.72 0.46 0.30 2.53 0.32
CCSD(T)-F12c aXZ 16.64 5.21 2.31 1.22 0.32
CCSD(T)-F12c aXZM 10.16 1.86 0.76 1.51 0.20
CCSD(T)-F12c (scaled) aXZ 12.85 3.43 1.25 1.10 0.39
CCSD(T)-F12c (scaled) aXZM 5.51 0.39 0.00 2.11 0.25
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FIG. 4. Dependence of the MP2-F12 (left panels) and CCSD(T)-F12b (right panels) interaction energies on the geminal exponent β for the He–CH4 (top) and
CH4–H2O (bottom) dimers. The MP2-F12 calculations use the 3C(FIX) Ansatz just like the CCSD(T)-F12b approach. The triples term in CCSD(T)-F12b is
not scaled.
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description of the interelectronic cusp—in fact, the right-hand
side of Eq. (3) behaves for small r12 like C + O(r2

12) and is
incapable of recovering the leading linear term for any ci

and ξ i. Nevertheless, in the diagonal Ansatz,8 the explicitly
correlated pair function amplitudes are fixed to the values
that would have reproduced the exact linear terms1, 2 had the
Slater-type correlation factor not been expanded in GTGs.

It is not our intention to criticize the Gaussian gemi-
nal fit of Eq. (3). Extensive numerical experience with the
F12 methods shows that it is the improved description of the
entire near-coalescence regions of the many-electron space,
rather than forcing the exact behavior of the wavefunction
in the coalescence limit, that is the key to the superior ba-
sis set convergence of correlation energy. Thus, a reproduc-
tion of the exact linear terms by the diagonal Ansatz is not
a requirement for obtaining accurate correlation energies and
one can obtain the coefficients ci and exponents ξ i in a man-
ner other than fitting to a Slater-type formula. Therefore, we
explored the possibility of generating a GTG Ansatz through
a straightforward interaction energy minimization. Specifi-
cally, we selected the He–CH4 dimer, set NGTG = 6, and
assumed the exponents ξ 1, . . . , ξ 6 to form an even-tempered
expansion with the center at 1.0 and the ratio of 3.0. The
corresponding coefficients c1, . . . , c6 were then chosen to
minimize the value of the (non-density-fitted) MP2-F12 inter-
action energy in the 3C(FIX) Ansatz. The actual minimization
was performed using the Powell algorithm as implemented
in the SciPy library103 with calls to MOLPRO9 to compute
MP2-F12 interaction energies. Separate minimizations were
carried out for the aXZ and aXZM basis sets for X = D,T,Q.
It should be noted that the idea of optimizing GTG coeffi-
cients in the context of MP2-F12 is neither original (Valeev102

has already observed that short optimized GTG expansions
provide superior MP2-F12 correlation energies compared to
a single Slater-type factor) nor computationally sensible for
each dimer and each basis set separately. Nevertheless, such
an optimization provides a useful indication of how much the
interaction energies can be improved by varying the F12 cor-
relation factor.

The comparison of the MP2-F12 and CCSD(T)-F12b in-
teraction energies in the He–CH4 complex, obtained using
different correlation factors, is presented in Table XII. We
listed three selections of β for the Slater-type factor: the MOL-
PRO default choice β = 1.0 a−1

0 , the value recommended in
Ref. 86 (1.1, 1.2, 1.4, and 1.4 a−1

0 for aDZ, aTZ, aQZ, and
a5Z, respectively), and the value that minimizes the density-
fitted MP2-F12 interaction energy (Fig. 4). Additionally, we
have listed the results obtained using an optimized contrac-
tion of six GTGs, generated as described in the preceding
paragraph. Due to computational complexity, we have not per-
formed a GTG optimization for the a5Z and a5ZM basis sets.

The MP2-F12 results in Table XII confirm that the opti-
mal exponent β in the Slater-type correlation factor is very
close to 1.0 a−1

0 regardless of the basis set. Consequently,
the optimization of β provides little improvement over sim-
ply setting β to 1.0 a−1

0 . The use of the β exponents recom-
mended based on molecular correlation energy calculations86

increases the errors somewhat (from 1.59 to 2.45 cm−1 for
aDZ and from 0.61 to 1.03 cm−1 for aTZ). Apparently, the

TABLE XII. MP2-F12 and CCSD(T)-F12b interaction energies (in cm−1)
for the near-minimum geometry of the He–CH4 complex, computed using
several different choices of the correlation factor. The calculations in the
first three columns employed a single Slater-type correlation factor fitted
to six GTGs. The geminal exponent β was fixed at 1.0 a−1

0 (first column),
taken as the recommended value from Ref. 86 (like in most calculations in
this work, second column), or chosen to minimize the MP2-F12 interaction
energy (third column). The calculations in the column marked “Optimized
GTGs” utilized six GTGs with even-tempered exponents and coefficients ob-
tained by minimizing the MP2-F12 interaction energy as described in the text.
The diagonal 3C(FIX) Ansatz and the same DF/RI bases as in the rest of this
work were used. The numbers in parentheses are the values of β. The bench-
mark MP2/CBS and CCSD(T)/CBS interaction energies amount to −22.283
and −29.425 cm−1, respectively.

Basis β = 1.0 a−1
0 β from Ref. 86 Optimal β Optimized GTGs

MP2-F12
aDZ −20.694 −19.838 (1.1) −21.135 (0.90) −21.794
aDZM −22.465 −21.784 (1.1) −22.885 (0.89) −23.559
aTZ −21.676 −21.250 (1.2) −21.749 (0.91) −21.950
aTZM −22.028 −22.011 (1.2) −22.032 (1.05) −22.111
aQZ −21.985 −21.669 (1.4) −22.021 (0.88) −22.108
aQZM −22.195 −22.185 (1.4) −22.197 (1.08) −22.208
a5Z −22.124 −22.001 (1.4) −22.135 (0.91)
a5ZM −22.241 −22.236 (1.4) −22.241 (1.04)

CCSD(T)-F12b (unscaled triples)
aDZ −25.248 −24.590 (1.1) −25.416 (0.90) −26.090
aDZM −27.708 −27.198 (1.1) −27.871 (0.89) −28.242
aTZ −27.908 −27.602 (1.2) −27.913 (0.91) −28.123
aTZM −28.844 −28.868 (1.2) −28.859 (1.05) −28.972
aQZ −28.759 −28.528 (1.4) −28.766 (0.88) −28.877
aQZM −29.227 −29.242 (1.4) −29.234 (1.08) −29.262
a5Z −29.093 −29.012 (1.4) −29.094 (0.91)
a5ZM −29.331 −29.335 (1.4) −29.332 (1.04)

CCSD(T)-F12b (scaled triples)
aDZ −26.195 −25.535 (1.1) −26.356 (0.90) −27.026
aDZM −28.756 −28.242 (1.1) −28.909 (0.89) −29.214
aTZ −28.292 −27.989 (1.2) −28.293 (0.91) −28.498
aTZM −29.248 −29.275 (1.2) −29.264 (1.05) −29.375
aQZ −28.934 −28.704 (1.4) −28.939 (0.88) −29.045
aQZM −29.405 −29.421 (1.4) −29.412 (1.08) −29.436
a5Z −29.186 −29.105 (1.4) −29.186 (0.91)
a5ZM −29.423 −29.428 (1.4) −29.425 (1.04)

treatment of dispersion energy requires a more diffuse cor-
relation hole than the calculations of molecular correlation
energies. It should be noted, however, that the selection of
β matters only for small basis sets. For the aTZM, aQZM,
and a5ZM bases the three choices of β do not lead to a dif-
ference of more than 0.02 cm−1. Moreover, the differences
become even less pronounced at the CCSD(T)-F12b level of
theory. Therefore, while our study indicates that the simple β

= 1.0 a−1
0 choice should be the recommended one for weak

interaction energy calculations, the expected improvement
over the values from Ref. 86 employed throughout the rest
of this work does not warrant a recalculation of all results.
As the results in the last column of Table XII indicate, the
GTG contraction that is fully optimized for interaction en-
ergy does provide some improvement over the contractions
obtained by fitting the Slater-type correlation factor. However,
the improvement quickly diminishes when one goes to larger
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basis sets, and it never constitutes a significant fraction of the
error remaining at the CCSD(T)-F12b level of theory. Thus,
our tests indicate that the Slater-type correlation factor with a
properly chosen parameter β is close to optimal and further
optimization of this factor does little to overcome the remain-
ing basis set incompleteness effects.

IV. SUMMARY

We have investigated the basis set convergence of weak
interaction energies at the “gold-standard” CCSD(T) level
of theory, employing both conventional CCSD(T) and three
explicitly correlated approaches: CCSD(T)-F12a, CCSD(T)-
F12b, and CCSD(T)(F12*)≡CCSD(T)-F12c. This work ex-
tends our earlier study of noble gas dimers72 to seven com-
plexes of varying polarity and interaction strength: He–
H2O, Ar–H2O, He–CH4, Ar–CH4, H2O–H2O, CH4–H2O, and
CH4–CH4. We established benchmark CCSD(T)/CBS inter-
action energies for the van der Waals minima using conven-
tional CCSD(T) in bases up to a6ZM and CCSD(T)-F12 in
bases up to a5ZM. The two approaches displayed remarkable
consistency giving a mean absolute deviation from each other
equal to just 0.07 cm−1.

The seven dimers considered in this work can be di-
vided into two classes. For the strongly bound water-water
and methane-water dimers, the advantage of CCSD(T)-F12
over conventional CCSD(T) is tremendous. The situation for
the remaining five dimers is substantially different: while the
F12 treatment clearly improves the results, the improvement
is in general smaller than the one afforded by a simple addi-
tion of midbond functions. The scaling of the (T) triples con-
tribution [Eq. (1)] does improve convergence in most cases,
however, the gains for the midbond-containing basis sets are
limited as the scaling overshoots.

Our numerical investigations shed some light on the
residual deviations of CCSD(T)-F12 weak interaction ener-
gies from the CCSD(T)/CBS limit. They also provide some
recommendations how to maximize the performance of F12
interaction energy calculations. First, midbond functions con-
sistently provide a large boost to the basis set convergence.
Second, the value of 1.0 a−1

0 for the geminal exponent β is
close to optimal although the dependence of interaction ener-
gies on β is not strong. Finally, one should stay away from
the CCSD(T)-F12a approach. While its scaled-triples ver-
sion does give very reasonable interaction energies in double-
zeta basis sets, it does not provide a systematic improvement
when the orbital basis is enlarged and/or the CBS extrapo-
lation is performed. On the other hand, the unscaled-triples
CCSD(T)-F12a approach strongly benefits from an error can-
cellation between the CCSD and (T) contributions. Such a
cancellation is much less of a critical factor for the scaled-
triples CCSD(T)-F12b and CCSD(T)-F12c approaches and
these variants are the best choices to maximize the accuracy of
computed interaction energies. If the auxiliary basis sets em-
ployed are sufficiently complete, the leading source of resid-
ual error in large-basis CCSD(T)-F12b and CCSD(T)-F12c
interaction energies is the inaccuracy of the triples term (ei-
ther scaled or unscaled).

We are well aware that the subtle differences between
various large-basis CBS estimates studied in this work are
often smaller than the interaction energy contributions ne-
glected at the frozen-core CCSD(T) level, in particular, the
effects of higher order coupled-cluster excitations. The in-
crease of computer power and the algorithmic and imple-
mentation improvements have made it possible to include
the latter effects for small dimers using, for example, a
moderate-basis CCSDT(Q) treatment.104, 105 As a result,
residual errors in the frozen-core CCSD(T) interaction energy
become once again one of the leading contributions to the
overall interaction energy uncertainty even when very large
basis sets are used.74–76, 106, 107 Thus, the benchmark investi-
gations presented here are likely to aid in the further devel-
opment of ultra-accurate weak interaction potentials for small
dimers of experimental and theoretical interest.
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