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A direct method (D-�MBPT(2)) to calculate second-order ionization potentials (IPs), electron affini-
ties (EAs), and excitation energies is developed. The �MBPT(2) method is defined as the correlated
extension of the �HF method. Energy differences are obtained by integrating the energy derivative
with respect to occupation numbers over the appropriate parameter range. This is made possible
by writing the second-order energy as a function of the occupation numbers. Relaxation effects
are fully included at the SCF level. This is in contrast to linear response theory, which makes the
D-�MBPT(2) applicable not only to single excited but also higher excited states. We show the re-
lationship of the D-�MBPT(2) method for IPs and EAs to a second-order approximation of the
effective Fock-space coupled-cluster Hamiltonian and a second-order electron propagator method.
We also discuss the connection between the D-�MBPT(2) method for excitation energies and the
CIS-MP2 method. Finally, as a proof of principle, we apply our method to calculate ionization po-
tentials and excitation energies of some small molecules. For IPs, the �MBPT(2) results compare
well to the second-order solution of the Dyson equation. For excitation energies, the deviation from
equation of motion coupled cluster singles and doubles increases when correlation becomes more
important. When using the numerical integration technique, we encounter difficulties that prevented
us from reaching the �MBPT(2) values. Most importantly, relaxation beyond the Hartree-Fock level
is significant and needs to be included in future research. © 2013 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4790626]

I. INTRODUCTION

Modern quantum chemistry is a high precision tool to
calculate molecular properties, explain experimental data, and
predict reaction pathways. The underlying physics, however,
is extremely complicated and in almost all applications, ap-
proximations are employed. In chemistry, we are generally
interested in energy differences (reaction energies and barri-
ers, spectroscopic data, solvation energies, etc.). To not ex-
acerbate intrinsic errors of the theoretical method, initial and
final states need to be described consistently and with errors
lower than the quantity of interest. Conceptually, the simplest
approach to calculate energy differences is to apply the same
method to both states, which proves successful to explore the
potential energy surface and to obtain reaction energies and
barriers.

The focus of this work is the computation of energy dif-
ferences between ground and electronic excited states, where
the number of electrons may change. In such cases, the defi-
nition of the final state becomes more challenging. Within the
self-consistent field (SCF) approach, the initial and final states
can be characterized through the occupation of the orbitals. To
avoid variational collapse in the excited state, the orbital oc-
cupation has to be fixed by symmetry or by constraint. Taking
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the energy difference between the variationally optimized fi-
nal and initial states yields the �SCF method, applicable to
Hartree-Fock or density functional theory (DFT).

One of the disadvantages of the �SCF method is that
the energy difference is typically much smaller than the
total energies of the initial and final states (possibly or-
ders of magnitude depending on system size and quan-
tity of interest). The resulting precision problem is avoided
in direct difference methods, where energy differences are
computed directly without explicit determination of initial
and final states. A simple example of a direct method at
the Hartree-Fock level is the use of Koopmans’s theorem
to calculate ionization potentials (IPs) and electron affini-
ties (EAs).1 At the correlated level, IPs, EAs, and excita-
tion energies can be computed directly with the equation-of-
motion coupled cluster (EOM-CC)2, 3 or Fock space coupled
cluster4, 5 methods. Related approaches to obtain IPs and EAs
at various levels of correlation6, 7 are based on the electron
propagator.8 Excitation energies can be derived from the po-
larization propagator,8 which leads in its uncorrelated form
to the random phase approximation (RPA) or, equivalently, to
time-dependent Hartree-Fock theory.9 RPA is closely linked
to time-dependent density functional theory,10 where cor-
relation is approximated through the exchange-correlation
potential. A simplification of the RPA is the configura-
tion interaction singles (CIS) method, where the excited
state is a linear combination of singly excited Hartree-Fock
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determinants. If dynamic correlation of the ground and ex-
cited state is expressed up to second order, the resulting
method is CIS-MP2,11 which is similar in spirit to the D-
�MBPT(2) (direct �MBPT(2)) method for excitation ener-
gies described in this paper.

The direct methods mentioned above have in common
that initial and final states are not described at the same level
of theory. Typically, orbitals of the ground state are utilized
to express the property of interest using an expansion (linear
or exponential) or through an iterative solution of the Dyson
equation. A distinct advantage of � methods is that initial
and final states are treated equally and, consequently, there is
no need for the relaxation of orbitals. In the here developed
D-�MBPT(2), we aim to keep that benefit but to avoid the
aforementioned precision problem. Energies of the initial and
final states are given as a perturbation expansion up to second
order of a variationally optimized Hartree-Fock wave function
with appropriate occupation numbers. The energy difference
between final and initial state is obtained through numerical
integration of the energy derivative with respect to a chosen
parameter.

The numerical integration technique has been previously
applied to calculate IPs, EAs, and excitation energies at the
�SCF level.12 The general idea is the same as the one un-
derlying the thermodynamic integration technique in molec-
ular dynamics,13, 14 the adiabatic connection in the context
of DFT,15 or the integral Hellmann-Feynman theorem.16 A
coupling parameter is introduced, which defines a pathway
that connects two different states of a system. At the extreme
points of complete coupling or no coupling the system has to
correspond to a physically meaningful state. Along the path,
however, the parameter can be chosen by convenience. Let λ

be such a parameter. At λ = 0 the system is in its initial state
and at λ = 1 the system is in its final state. The energy differ-
ence between initial and final state �E is then given by

�E = E(1) − E(0) =
∫ 1

0

∂E

∂λ
dλ. (1)

Instead of potentially large energies, the energy derivative
with respect to λ is evaluated, which is on the same order of
magnitude as the energy difference itself and can lead to an
efficient computational scheme. Essential for the success of
such approach is that the energy derivative be smooth within
the parameter range.

If Eq. (1) is employed to calculate IPs, an obvious choice
for parameter λ is the occupation number of the ionized or-
bital. The integration path between end points is then char-
acterized by fractional occupation numbers, which do not
have to be physically meaningful but the corresponding or-
bitals may provide a superior reference in post Hartree-Fock
methods.17 In the context of the Xα formalism, a midpoint in-
tegration scheme results in Slater’s transition state concept,18

which is shown in Ref. 19. Slater’s concept is based on a per-
turbation expansion of the initial and final state about a com-
mon occupation number and has been successfully applied to
the calculation of IPs20 and to rationalize the operator choice
within an effective one-particle theory yielding improved IPs
as a measure for functional accuracy within density functional
theory.21 Related to Slater’s approach, transition energies and

probabilities can be obtained by minimizing the energy of
a transition operator,22, 23 which has been utilized within the
context of electron propagator theory24 to compute valence
and core IPs.

In the following, we will apply the concept represented
by Eq. (1) to obtain second-order IPs, EAs, and excitation
energies and compare the resulting equations to various tech-
niques. Test calculations for ionization potentials and excita-
tion energies are given for small molecules.

II. THEORY AND IMPLEMENTATION

In Ref. 12, the feasibility of a numerical integration
scheme to calculate IPs, EAs, and excitation energies has been
tested for uncorrelated wavefunctions. To include correlation
at the lowest level (extension to higher order is possible), an
energy expression up to second order in perturbation

E(2) = EHF + 1

4

∑
ijab

〈ij‖ab〉〈ab‖ij 〉
εi + εj − εa − εb

(2)

can be inserted into Eq. (1). EHF is the Hartree-Fock energy
and εm is the orbital energy of orbital m; antisymmetric two-
electron integrals are used. i, j, k, . . . refer to orbitals occu-
pied in the reference determinant, a, b, c, . . . refer to vir-
tual orbitals, and we will use m, n, p, . . . for general orbitals.
The Hamiltonian used to derive Eq. (2) is partitioned into the
zeroth-order Hamiltonian, which is chosen to be the diagonal
one-electron Fock operator, and the perturbation, given as the
two-electron contribution to the exact Hamiltonian subtracted
by the Coulomb and exchange parts of the Fock operator. The
Hartree-Fock energy is recovered as the sum of zeroth- and
first-order energies.

The correlated ground, ionized, and excited state, as well
as the state containing an additional electron are character-
ized by an occupation number or a set of occupation num-
bers in the Hartree-Fock reference function, which is se-
lected as the parameter λ in Eq. (1). The derivative of the
Hartree-Fock energy with respect to an occupation number
has been discussed in Ref. 12. In order to obtain the deriva-
tive of the correlation energy, we write the correlation energy
in terms of occupation numbers. The second-order expression
in V = 1

4

∑
mnpq〈mn‖pq〉m†n†qp as a function of occupation

numbers has been derived by evaluating the connected contri-
butions to the free energy,25 where the zeroth-order Hamilto-
nian is a non-interacting Hamiltonian including kinetic energy
and nuclear-electronic interaction. Since we use a slightly dif-
ferent partitioning of the Hamiltonian (as described in the pre-
vious paragraph), the second-order expression is given by

E(2)
c = 1

4

all∑
mnpq

nmnn(1 − np)(1 − nq)
〈mn‖pq〉2

εm + εn − εp − εq

,

(3)

where the remaining term in Ref. 25 cancels with Coulomb
and exchange contributions from the Fock operator. nm is the
occupation number of orbital m. Note, that the distinction be-
tween occupied and unoccupied orbitals does not exist when
fractional occupation is allowed. At zero K the expression
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reduces to the integer-occupation second-order expression.
The partial derivative of E(2)

c with respect to an occupation
number is obtained as

∂E(2)
c

∂nr

= 1

2

all∑
mpq

nm(1 − np)(1 − nq)
〈mr‖pq〉2

εm + εr − εp − εq

− 1

2

all∑
mnq

nmnn(1 − nq)
〈mn‖rq〉2

εm + εn − εr − εq

+ higher-order terms. (4)

When differentiating with respect to nr in Eq. (4), r is a gen-
eral orbital index. The first term in Eq. (4) corresponds to dif-
ferentiation, where r is a hole index in the corresponding en-
ergy expression with integer occupancy; whereas the second
term corresponds to differentiation, where r is a particle index.
The higher-order terms are a consequence of the dependence
of the orbital energies on the occupation number26

εs = hss +
all∑
n

nn〈ns‖ns〉. (5)

The partial derivative of the orbital energy with respect to an
occupation number is given by

∂εs

∂nr

= 〈rs‖rs〉. (6)

Using Eq. (6), we obtain the higher-order terms as

HOT = −1

4

all∑
mnpq

nnnm(1 − np)(1 − nq)

× 〈mn‖pq〉2

(εm + εn − εp − εq)2

× (〈rm‖rm〉 + 〈rn‖rn〉 − 〈rp‖rp〉 − 〈rq‖rq〉) .

(7)

In Eqs. (4) and (7) the implicit choice of orbitals is
the set that makes the second-order energy at any given
occupation stationary with respect to orbital change. Here,
we use orbitals for which the SCF energy is stationary with
respect to orbital change. As a consequence, we may neglect
orbital relaxation effects beyond what is captured at the SCF

level; i.e., the term ∂EHF

∂φr

∂φr

∂nr
= 0 but ∂E2

c

∂φr

∂φr

∂nr
�= 0.

The IP is defined as the energy difference between the
ionized and the neutral system; i.e., E(0) = EN and E(1) =

EN−1 in Eq. (1), where N is the number of electrons in the
system. If ionization occurs from a single orbital i, while the
remaining orbitals keep integer occupation, the second-order
IP is obtained by setting λ = 1 − ni and expressing the energy
through second order

E(N−1) − EN = IPi =
∫ 1

0

∂E(2)

∂λ
dλ =

∫ 1

0

∂E(2)

∂ni

∂ni

∂λ
dλ,

(8a)

=
∫ 1

0

(
−εi − ∂E(2)

c

∂ni

)
dλ, (8b)

=
∫ 0

1

(
εi + ∂E(2)

c

∂ni

)
dni. (8c)

∂E
(2)
c

∂ni
is derived from Eq. (4) by setting all orbital occupa-

tions to integer values, except for orbital i, which can play the
role of an occupied or an unoccupied orbital. The sums are
split into terms independent of orbital i and terms that include
orbital i. The partial derivative is then given by

∂E(2)
c

∂ni

= 1

2

occ∑
j

virt∑
ab �=i

〈ij‖ab〉2

εi + εj − εa − εb

(I )

+
occ∑
j

virt∑
a

(1 − ni)
〈ij‖ia〉2

εj − εa

(I )

− 1

2

occ∑
kj �=i

virt∑
a

〈kj‖ia〉2

εk + εj − εi − εa

(II )

−
occ∑
j

virt∑
a

ni

〈ij‖ia〉2

εj − εa

(II )

+ higher-order terms. (9)

Terms I and II correspond to the diagonal diagrammatic
integer-occupation expressions given in Figure 1. Notice, the
diagrams represent complete sums (for instance, the first and
second terms are realized by diagram I). We use antisym-
metrized Goldstone diagrams,27 where unlabeled lines are
summed over. The interpretation of the diagrams follows
conventional rules27 except that due to fractional occupation
of orbital i, the sums over occupied and virtual orbitals in-
clude orbital i. The denominators are most easily derived
from the generating energy diagrams. By convention, the

(I)

(II)

(a) (b)

(IV)

(V)

FIG. 1. (a) Diagonal diagrammatic expressions corresponding to terms I and II in Eq. (9), (b) diagonal diagrammatic expressions corresponding to terms IV and
V in Eq. (12); diagrams on the left of the arrows correspond to second-order energy terms, where the scissors indicate which line is cut to obtain the diagrams
on the right of the arrows.
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resolvent lines are omitted with the understanding that an en-
ergy denominator is included between each successive pair of
vertices.

Notice that differentiation with respect to the occupation
number in the second-order energy expression corresponds to
a systematic opening of the second-order energy diagrams, in-
dicated by scissors in Figure 1. If a particle line is cut, the line
direction in the IP term is changed, since the open line has to
have hole character to describe an ionization. This is a reflec-
tion of the fact that a partially occupied orbital contributes as
a hole as well as a particle in the correlation expression, as
discussed above.

The higher-order terms in Eq. (9) resulting from the de-
pendence of the orbital energies on the occupation numbers
are derived from Eq. (7) and given by

HOTIP = −1

4

occ∑
jk �=i

virt∑
ab �=i

〈kj‖ab〉2

(εk + εj − εa − εb)2

× (〈ik‖ik〉 + 〈ij‖ij 〉 − 〈ia‖ia〉 − 〈ib‖ib〉)

− 1

2

occ∑
j

virt∑
ab �=i

ni

〈ij‖ab〉2

(εi + εj − εa − εb)2

× (〈ij‖ij 〉 − 〈ia‖ia〉 − 〈ib‖ib〉)

− 1

2

occ∑
jk �=i

virt∑
b

(1 − ni)
〈kj‖ib〉2

(εk + εj − εi − εb)2

× (〈ik‖ik〉 + 〈ij‖ij 〉 − 〈ib‖ib〉)

− 2
occ∑
j

virt∑
b

ni(1 − ni)
〈ij‖ib〉2

(εj − εb)2

× (〈ij‖ij 〉 − 〈ib‖ib〉) . (10)

We separated terms according to the dependence on orbital i.
Equation (10) is represented by diagram III in Figure 2. The
unconventional bracket used in Figure 2 signifies that only the
subset of terms in which the line indices that are connected
by the bracket are the same, are representative of term III.
Interestingly, these diagrams can be derived from a subset of
third-order energy diagrams by cutting the bubble as indicated
by the scissors in Figure 2. The full set of third-order energy
diagrams can be found in Ref. 27.

The EA is defined as the energy difference between the
neutral system and the system with an additional electron; i.e.,
E(0) = EN+1 and E(1) = EN in Eq. (1). Analogous to the IP,
if attachment occurs into a single orbital a, while the remain-

ing orbitals keep integer occupation, the second-order EA is
obtained by setting λ = na and expressing the energy through
second order

EN − E(N+1) = EAa =
∫ 1

0

∂E(2)

∂λ
dλ =

∫ 1

0

∂E(2)

∂na

∂na

∂λ
dλ,

(11a)

=
∫ 1

0

(
εa + ∂E(2)

c

∂na

)
dna. (11b)

As in the IP case, the Hartree-Fock contribution to the
EA is the orbital energy, which is augmented by a correlation
term. The integrand in Eqs. (8) and (11) can, therefore, be
regarded as a correlated orbital energy.

∂E
(2)
c

∂na
is derived from Eq. (4) by setting all orbital occupa-

tion to integer value, except for orbital a. The sums are split
according to the participation of orbital a. We obtain

∂E(2)
c

∂na

= 1

2

occ∑
i

virt∑
bc �=a

〈ai‖bc〉2

εi + εa − εb − εc

(IV )

+
occ∑
i

virt∑
b

(1 − na)
〈ai‖ab〉2

εi − εb

(IV )

− 1

2

occ∑
ij �=a

virt∑
b

〈ij‖ab〉2

εi + εj − εa − εb

(V )

−
occ∑
i

virt∑
b

na

〈ai‖ab〉2

εi − εb

(V )

+ higher-order terms. (12)

The diagrammatic expressions of terms IV and V are given in
Figure 1. Note that the sums over occupied and virtual orbitals
include orbital a. Equivalent to the IP diagrams, the EA dia-
grams can be derived by cutting the lines of the second-order
energy diagrams. If a hole line is cut, the direction of the line
changes, representing the ambiguous character of an orbital
with fractional occupation number.

The higher-order terms in Eq. (12) derived from Eq. (7)
are given by

HOTEA = −1

4

occ∑
ij �=a

virt∑
bc �=a

〈ji‖bc〉2

(εj + εi − εb − εc)2

× (〈aj‖aj 〉 + 〈ai‖ai〉 − 〈ab‖ab〉 − 〈ac‖ac〉)

(b)

(VI)

a

a

a

a

(a) i

i

(III)

i

i

FIG. 2. (a) Diagonal diagrammatic expressions corresponding to term III in Eq. (10), (b) diagonal diagrammatic expressions corresponding to term VI in
Eq. (13); the unconventional bracket indicates that the line indexes are the same; diagrams on the left of the arrows correspond to third-order energy terms,
where the scissors show which line is cut to obtain the diagrams on the right of the arrows.
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− 1

2

occ∑
i

virt∑
bc �=a

na

〈ai‖bc〉2

(εa + εi − εb − εc)2

× (〈ai‖ai〉 − 〈ab‖ab〉 − 〈ac‖ac〉)

− 1

2

occ∑
ij �=a

virt∑
b

(1 − na)
〈ji‖ba〉2

(εj + εi − εb − εa)2

× (〈aj‖aj 〉 + 〈ai‖ai〉 − 〈ab‖ab〉)

− 2
occ∑
i

virt∑
b

na(1 − na)
〈ai‖ba〉2

(εi − εb)2

× (〈ai‖ai〉 − 〈ab‖ab〉) (13)

The diagrammatic expressions of terms VI representing
Eq. (13) and the corresponding third-order energy diagrams
can be found in Figure 2.

For an excitation between orbital φi and φa, the system
change is characterized by the occupation numbers ni and na,

dE = ∂E

∂na

dna + ∂E

∂ni

dni. (14)

Since the occupation of orbital a increases by the same
amount as the occupation of orbital i decreases, only a single
parameter λ is needed. Expressing the energy through second
order with ni = 1 − λ and na = λ, Eq. (1) becomes

�Ei→a =
∫ 1

0

(
∂E(2)

∂na

∂na

∂λ
+ ∂E(2)

∂ni

∂ni

∂λ

)
dλ,

=
∫ 1

0

(
εa − εi + ∂E(2)

c

∂na

− ∂E(2)
c

∂ni

)
dλ, (15)

where �Ei→a is the energy difference between the excited and

ground state. The partial derivatives ∂E
(2)
c

∂ni
and ∂E

(2)
c

∂na
are given

in the Appendix. In Eqs. (9) and (12) only one orbital was
allowed to be fractionally occupied, whereas orbitals i and a
have fractional occupation numbers in Eq. (15). The partial
derivatives of the energy with respect to the occupation num-
ber of orbital i (Eq. (9)) and a (Eq. (12)) can be expressed
as the derivative with respect to a general orbital r. We chose
to write a separate equation for the IPs and EAs to make the
connection to the diagrammatic expressions in Fig. 1. In the
Appendix, we give the derivatives in Eq. (15) with respect to
the occupation number of a general orbital r, where the oc-
cupation of orbital s is also fractional but all other orbitals
have integer occupation. Notice, that the leading terms do not
depend on how many orbitals are fractionally occupied, only
the number of terms with explicit dependence on the occu-
pation numbers of the partially occupied orbitals increases.
Since the terms with explicit dependence on the occupation
numbers only occur because we restrict the sums of the lead-
ing terms to not include fractionally occupied orbitals, the di-
agrammatic expressions of the derivatives of the correlation
energy in Eq. (15) are the sum of the diagrammatic expres-
sions for the IP of orbital i and the EA of orbital a (Figures 1
and 2).

When optimized Hartree-Fock orbitals at fractional oc-
cupation are used in the correlated expressions, orbital relax-
ation in response to ionization, electron attachment, and ex-

citation is introduced through integration over the parameter.
The integrands are the Hartree-Fock contributions, i.e., the or-
bital energies, and a second-order correlation term. Notice,
however, that the Hartree-Fock contributions are not Koop-
mans’s values but are the fully relaxed �SCF results for ion-
ization and electron attachment if the integration is carried out
exactly.12 We have previously shown that the orbital energy
difference in Eq. (15) yields the �SCF result for excitation.12

Since correlation effects are expressed using a fixed reference
determinant at variable occupation, relaxation is treated at the
SCF level only.

III. DISCUSSION AND COMPARISON
WITH OTHER METHODS

The derivative of the second-order energy with respect
to occupation numbers has been considered in the context of
DFT28 to analyze the behavior of the energy as a function of
partial charges. The exact energy as a function of fractional
charges is a straight line between the integer points,29 which is
violated by common density functionals. Higher-order terms
were neglected in Ref. 28 and only variations in frontier or-
bitals were considered. Since we would like to describe va-
lence and core-ionization and attachment processes in differ-
ent orbitals leading to various excitations, we are interested
in the energy derivative with respect to the occupation of a
general orbital.

The second-order, integer-occupation expression for IPs
(Eq. (9)) can alternatively be derived by taking the energy
difference of the N − 1- and N-particle system, where the
energies are expressed up to second order in a common set
of orbitals. In the N − 1-particle system the sum over oc-
cupied orbitals is reduced by terms where an occupied or-
bital is equal to i and the sum over virtual orbitals includes
terms where a virtual orbital is equal to i. The result is the
second-order IP given as the sum of the negative orbital en-
ergy εi and the negative of the second-order terms of Eq. (9).
(The sign change is due to the integration variable change in
Eq. (8).) This consistency is reassuring, given that our goal
was to express this same energy difference in Eq. (8).
For EAs, the second-order, integer-occupation expression of
Eq. (12) can be derived by taking the energy difference of
the N-particle system and the N + 1 particle system. The cor-
responding expression for �Ec

i→a can be obtained by taking
the difference of the second-order energy of the excited and
ground state expressed in a common set of orbitals. In the ex-
cited system, the sum over occupied orbitals is reduced by
terms where j, k, or l is equal to i, the sum over unoccupied
orbitals is decreased by terms where b or c is equal to a. The
sum over virtual orbitals includes terms where b or c is equal
to i and the sum over occupied orbitals is augmented by terms
where j, k, or l is equal to a.

Further, the IP and EA diagrams in Figure 1 can
be deduced from an effective Fock-space coupled-cluster
Hamiltonian,4, 5 which was used to formulate an exact one-
particle theory, yielding exact IPs and EAs.30 The second-
order approximation of the occupied-occupied and the virtual-
virtual block of the effective Hamiltonian leads to the cor-
responding second-order IPs and EAs.31 In Eq. (3), we



074101-6 Beste, Vázquez-Mayagoitia, and Ortiz J. Chem. Phys. 138, 074101 (2013)

used canonical Hartree-Fock orbitals implying that the off-
diagonal Fock elements are zero. We then recognize that di-
agrams I and II in Figure 1 are the diagonal terms of the
remaining non-zero second-order diagrams of the occupied-
occupied block (diagrams VI and VII in Fig. 4 in Ref. 31).
Equivalently, diagrams IV and V in Figure 1 are the diagonal
terms of the remaining non-zero second-order diagrams of the
virtual-virtual block in Ref. 31.

Notice, that through differentiation one only obtains di-
agonal terms, whereas the effective Hamiltonian derived from
Fock-space coupled-cluster is diagonalized to yield IPs and
EAs. Diagonalization can be interpreted as a relaxation of
the orbitals, which is incorporated in the method presented
herein through Eq. (1). In fact, diagonalization of the effec-
tive Hamiltonian causes severe limitations due to the intruder
state problem and renders the effective Hamiltonian approach
impractical.31 The intruder state problem is largely avoided
when the energy dependence in the correlation potential is re-
tained and the corresponding equations are solved for a single
IP or EA at a time, which is the case in the partitioned equa-
tion of motion approach,2, 3 in propagator theory,8 and in the
method described here. For a small reference space, intruder
states may not present a complication. In that case, the advan-
tage of an energy independent effective Hamiltonian or linear
response methods is, of course, that all states of interest are
obtained in a single calculation.

The close relationship between the effective Hamiltonian
obtained from Fock-space coupled-cluster, equation of mo-
tion coupled-cluster and propagator theory has been shown
previously.30 Using electron propagator theory, the lowest-
order correction to Koopmans’s theorem IPs can be obtained
as the first iteration of the second-order diagonal self-energy,8

which again leads to diagrams I and II of Figure 1. The third-
order diagrams of Figure 2 can be identified as the diagonal
terms of the constant-energy contribution to the third-order
self-energy,32–34 where the restrictions indicated by the brack-
ets are lifted. We note, that the self-energy of the second-order
IP has been analyzed in terms of correlation and relaxation
contributions by splitting the sum represented by diagram II
in Fig. 1 into sums where i is included and where it is not
(same as in this work but with integer occupation).35 The
second integer-occupation expression of term II in Eq. (9) is
the lowest-order relaxation correction to Koopmans’s value
and may facilitate a more efficient numerical integration over
occupation numbers. In Ref. 24, fractional occupation num-
bers have been exploited and the first iteration of the resulting
equations coincides with the four terms of Eq. (9).

Finally, we seek a connection between the D-�MBPT(2)
method for excitation energies and second-order methods
based on configuration interaction singles or Tamm-Dancoff
approximation. In CIS, the excited state is expressed as a
linear combination of excited Slater determinants obtained
by promoting one electron from an occupied orbital in the
Hartree-Fock wave function into a virtual orbital. Diagonal-
ization of the Hamiltonian in the space of singly excited
determinants yields excitation energies. Due to Brillouin’s
theorem, the inclusion of single excitations amounts to an
orbital rotation, which provides orbital relaxation. The CIS
wave function can, therefore, be thought of as a Hartree-Fock

quality wave function for the excited state. Treatment of dy-
namical second-order correlation effects in the CIS excited
state and the ground state leads to the CIS-MP2 method.11

The excited and ground state are also expressed through sec-
ond order in the D-�MBPT(2) method but instead of sup-
plying orbital relaxation through diagonalization in the space
of single-excited determinants, relaxation effects are included
through the use of fractional occupation numbers and subse-
quent integration. A direct comparison between the two meth-
ods is difficult because the second-order expansion of the CIS
wave function includes triple excitations and single excita-
tions from the CIS wave function, whereas these terms do
not occur in the D-�MBPT(2) method due to the use of a
relaxed excited state wave function. An advantage of the D-
�MBPT(2) method is that the unperturbed ground and ex-
cited states are treated equally, whereas they are not in the
CIS-MP2 method. Also, the excitation energy correction in
CIS-MP2 is defined as an energy difference between total
MP2 energies; our intent here is the derivation of a direct
scheme. An improvement over the CIS-MP2 is the CIS(D),36

where scaling is reduced from O(N6) to O(N5) and where
size intensivity37 is restored. Size intensivity37 had been vio-
lated in the equation for the triple excitations of the CIS-MP2
method, where disconnected terms appear. We would like to
point out that all diagrams listed here are connected, which
guarantees size extensivity27 for any value of fractional occu-
pation. Further developments include the SCS-CIS(D)38 and
the SOS-CIS(D)39 approaches and the corresponding SCS-
CC2 and SOS-CC2 methods,40, 41 where empirical parameters
(spin scaling) are introduced. The SOS methods can be imple-
mented as O(N4) algorithms. In the D-�MBPT(2) method,
the most expensive step in the calculation of the IPs, EAs,
and excitation energies including the higher-order terms is the
transformation of the two-electron integrals into the MO ba-
sis, which scales as O(N5). To reduce this cost, established
methods, such as the resolution of the identity,42 or approxi-
mations based on a reduced basis set43 can be applied.

IV. APPLICATIONS

We calculated IPs and excitation energies for a small
number of molecules: H2O, CH2O, NH3, CH4, and N2. Ge-
ometries were obtained with the MBPT(2) method and a cc-
pvtz basis set. Equation (9) and the corresponding equations
given in the Appendix are evaluated using optimized Hartree-
Fock orbitals at fractional occupation. We used a locally mod-
ified version of the NWChem program package.44 IPs and
excitation energies are computed by solving the integral in
Eqs. (8) and (15) utilizing a Legendre-Gauss quadrature. The
Legendre-Gauss interpolation is defined on an interval be-
tween −1 and 1. Instead of changing the interval limits, we
choose to use half of the interpolated integral (between 0
to 1) because the energy derivative does not have a symme-
try element at 0. Equation of motion coupled cluster singles
and doubles (EOM-CCSD) results for excitation energies are
computed with the NWChem program package using a cc-
pvtz plus Dunning-Hay double Rydberg basis set,45 ioniza-
tion potential EOM-CCSD values for valence IPs are calcu-
lated with GAMESS47 utilizing an uncontracted cc-pvtz basis
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FIG. 3. Energy derivative as a function of the occupation number of the partially occupied HOMO corresponding to the HOMO IP of H2O. Data points were
recorded in intervals of 0.1 electrons.

set. Singlet excitation is achieved by exciting an electron from
α-spin orbital i into α-spin orbital a, triplet excitation is ac-
complished by exciting an electron from α-spin orbital i into
β-spin orbital a.

Typical atomic orbital basis sets are contracted in the core
region. Since we calculate core as well as valence IPs, an un-
contracted basis set is expected to be superior. For the calcu-
lation of excitation energies we anticipate that the inclusion of
Rydberg functions is important. We tested a cc-pvtz, a com-
pletely uncontracted cc-pvtz, and a cc-pvtz plus Dunning-Hay
double Rydberg basis set45 for IPs, EAs, and excitation ener-
gies of H2O, see the supplementary material.46 The ioniza-
tion potentials are not very sensitive to the basis set and vary
within less than 0.1 eV except for the core IP, where the IP
using an uncontracted cc-pvtz basis set is 0.5 eV higher than
the IP calculated with the cc-pvtz basis set. For the EAs and
excitation energies, the contracted basis set is sufficient. How-
ever, the inclusion of Rydberg functions has a large effect on
EAs and excitation energies. Because water with an additional
electron has no bound state, the Hartree-Fock EAs are deter-
mined by the quality of the basis set and approach zero for
a large enough basis set.48 The effect of Rydberg functions
on excitation energies depends on the excitation type; i.e., the
lowest B2 excitation energy is reduced by 0.4 eV, whereas the
lowest A1 excitation energy is reduced by 12.1 eV. For the re-

maining calculations we used a completely uncontracted cc-
pvtz basis set for the computation of IPs and a cc-pvtz plus
Dunning-Hay double Rydberg basis set45 for excitation ener-
gies.

Figure 3 shows the energy derivative as a function of
the occupation number of the partially occupied HOMO cor-
responding to the HOMO IP (integrand in Eq. (8b)) and
Figure 4 depicts the energy derivative as a function of the
occupation number of the partially occupied HOMO cor-
responding to the HOMO-LUMO excitation (integrand in
Eq. (15)) in H2O. The graphs were obtained by recording data
points in intervals of 0.1 electrons. For the HOMO IP, there
is a striking difference between the Hartree-Fock derivative
(−εi) and the correlated derivative, for which the slope is op-
posite. The correlation effect is not as strongly pronounced for
the HOMO-LUMO excitation. For comparison, we included
the MBPT(2) derivative without the higher-order terms and
observe that the higher-order terms cause a shift of the deriva-
tive to higher values but, as expected, contribute significantly
less than the second-order terms. In order to assess the mag-
nitude of the orbital relaxation term beyond what is captured
at the Hartree-Fock level, we plotted the derivative of a 5th-
order polynomial obtained as a fit to the MBPT(2) total en-
ergies. Hidden by the polynomial fit is the numerical energy
derivative using an interval of 0.1 electrons. The overlap of

FIG. 4. Energy derivative as a function of the occupation number of the partially occupied HOMO corresponding to the HOMO-LUMO excitation in H2O.
Data points were recorded in intervals of 0.1 electrons.
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numerical derivative and polynomial fit gives us confi-
dence that the polynomial fit is representative. Indeed, the
�MBPT(2) value of 12.69 eV for the HOMO IP is repro-
duced from the fit using 4 Legendre-Gauss quadrature points.
The difference between the polynomial fit and the MBPT(2)
derivative is the remaining relaxation term, which is on the
order of the higher-order contribution stemming from the de-
pendence of the orbital energies on the occupation number.
The supplementary material46 includes the energy derivatives
as a function of occupation for all five IPs and the first three
excitation energies of H2O. For the IPs, the total Hartree-Fock
and MBPT(2) energies as a function of the orbital occupa-
tion are included as well. The total energies appear to be lin-
ear; i.e., the curvature difference apparent in the derivatives
cannot be recognized by visual inspection. For the interested
reader, the graphs of the energy derivatives corresponding to
the excitation energies are augmented by graphs showing the
individual contributions from electron donating and electron
receiving orbitals in the supplementary material.46

We analyzed the convergence behavior of the IPs and the
first three excitation energies of H2O with respect to the num-
ber of Legendre-Gauss quadrature points. The corresponding
data can be found in the supplementary material.46 For the
valence IPs, the D-�MBPT(2) value is converged using only
two quadrature points, for the core IP six quadrature points
are necessary. The corresponding D-�HF values (numerical
integration of −εi) converge slower. Since for the excitation

energies the energy derivative is taken with respect to the
occupation number of two orbitals simultaneously, we ob-
serve slower convergence; i.e., within 8-10 quadrature points.
We chose to use six quadrature points for the reported D-
�MBPT(2) values in Table I (IPs) and eight quadrature points
for the reported D-�MBPT(2) and D-�HF values in Table II
(excitation energies).

Table I contains the IPs for H2O, CH2O, CH4, NH3,
and N2 obtained with the �HF, �MBPT(2), and the D-
�MBPT(2) methods. These values are compared to Koop-
mans’s values, experimental results, IP-EOM-CCSD values,
and TOEP2 results.24 The latter is a second-order approxi-
mation to the electron propagator using the transition oper-
ator method. Remembering that the solution of the propa-
gator requires the iteration of the Dyson equation, this can
be viewed as a second-order benchmark method. Comparing
Koopmans’s values with the �HF and �MBPT(2) results, we
confirm that error cancellation occurs for Koopmans’s values
of valence IPs:1 relaxation effects decrease Koopmans’s IPs
while correlation effects increase the valence IPs. Error can-
cellation is less effective for core IPs because relaxation tends
to be dominant and the �HF method often provides a rea-
sonable approximation (N2 is an exception). The importance
of relaxation effects for core IPs has motivated a recent vari-
ational coupled-cluster based approach, where �SCF values
are reproduced through the application of the single excitation
operator using an exponential ansatz.49 For IPs in the range

TABLE I. Ionization potentials in eV; a completely uncontracted cc-pvtz basis set is used, geometries are calculated with MBPT(2)/cc-pvtz.

Sym. Koopmans �HF �MBPT(2) D-�MBPT(2) TOEP224 EOM-CCSD Exp.a

H2O A1 559.34 538.90 539.96 541.32 539.48 539.86
A1 36.61 34.01 33.83 33.77b (35.61)
B1 19.23 17.32 18.99 18.93 18.68 18.76 18.51
A1 15.77 13.21 14.94 14.83 14.56 14.69 14.74
B2 13.74 10.91 12.69 12.58 12.29 12.41 12.78

CH2O A1 559.85 537.91 539.67 540.37 538.5 539.48
A1 308.58 293.81 295.50 295.83b (296.30) 294.47
A1 38.12 34.78 34.31 34.22b (59.05)
A1 23.69 22.25 22.24 21.58
B2 18.84 17.66 17.29 17.28 17.41 16.6
A1 17.67 14.52 16.44 16.14 16.03 16.0
B1 14.50 12.28 14.78 14.56 14.52 14.5
B2 12.04 9.40 11.26 10.79 10.38 10.77 10.88

CH4 A1 304.89 290.55 290.74 292.87 291.15 290.86
A1 25.70 24.20 23.93 24.12
T2 14.85 13.50 14.44 14.55 14.34 14.40 13.6, 14.40 (15.0)

NH3 A1 422.69 405.05 405.84 407.50b (405.58) 405.6
A1 31.00 28.92 28.66 28.79
E 16.96 15.23 16.60 16.67 16.46 15.8 (16.5)

A1 11.65 9.38 10.90 10.96 10.65 10.73 10.85

N2 A1g 426.86 419.37 404.86 407.40 409.63 409.9
A2u 426.77 419.26 404.77 407.59 409.9
A1g 39.69 37.15 35.64 35.81
A2u 21.30 20.16 18.26 18.74 18.59 18.93 18.78
Eu 16.48 15.06 17.23 17.70 17.38 17.05 16.98
A1g 17.17 15.58 15.27 15.73 15.47 15.55 15.60

aReference from which experimental ionization potentials were obtained: core,50 valence.51

bAnalytical continuation is used, values in parentheses are quadrature results.
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TABLE II. Vertical excitation energies in eV; the cc-pvtz plus Dunning-Hay double Rydberg45 basis set is used,
geometries are calculated with MBPT(2)/cc-pvtz.

Sym. �HF D-�HF �MBPT(2) D-�MBPT(2) EOM-CCSD Exp.a

H2O 1B2 6.19 6.21 7.65 7.54 7.58 7.4
1A2 7.95 7.97 9.56 9.60 9.36 9.1
1A1 8.64 8.66 10.17 10.23 9.89 9.7

CH2O 1A2 2.58 . . . 4.19 . . . 4.03 4.07
1B2 6.00 6.02 7.66 7.27 7.22 7.11
1B2 6.89 6.90 8.56 8.27 8.10 7.97
1A1 6.89 6.86 8.64 8.38 8.17 8.14

CH4
1T2 9.79 9.80 10.59 10.82 10.66
3T2 9.67 9.68 10.40 10.72 10.34b 10.9
1A1 10.99 10.97 11.89 12.09 11.88

NH3
1A1 5.40 5.42 6.60 6.67 6.61 5.7
1E 6.82 6.84 8.23 8.34 8.14 7.3

1A1 7.27 6.96 8.54 8.33 8.60 7.9

N2
3	g 7.53 7.68c 8.06 8.11c 8.16d 8.04
1	g 8.34 8.44c 8.89 8.84c 9.55d 9.31
1
−

u 10.47 10.58c 9.37 9.95c 10.23d 9.92

aReferences from which experimental excitation energies were obtained: H2O,52 CH2O,52 CH4,
48 NH3,

53 N2.54

bInstead of EOM-CCSD value, the CCSD energy difference between ground state singlet and triplet is given.
cAnalytic continuation is used.
dValue from Ref. 55.

of 20–35 eV, correlation decreases the �HF IPs to a small
extent. Despite the general trend of error cancellation for
Koopmans’s valence IPs, the valence IPs for N2 are pre-
dicted to be in the wrong order using Koopmans’s approxi-
mation. Orbital relaxation effects (�HF values) do not cor-
rect the IP order but the inclusion of second-order correlation
(and higher) allows for an accurate description of the ioniza-
tion spectrum of N2. We observe that the performance of the
�MBPT(2) method is similar to the TOEP2 method when
compared to experiment. We also notice that the valence IPs
computed with the �MBPT(2) methods for H2O, CH4, NH3,
and N2 deviate from the IP-EOM-CCSD results by less than
0.3 eV with the exception of the lowest A2u ionization in N2.
The difference to IP-EOM-CCSD values is larger for CH2O,
indicating that correlation effects are increasingly important.

However, when the derivative of the energy with respect
to the occupation number is integrated to yield IPs, the de-
viation from the �MBPT(2) values can be a few tenths of
an eV and tends to be larger for core IPs. This implies that
orbital relaxation effects beyond what is captured at the SCF
level are important, particularly where relaxation is dominant.
(See, for instance, left panel of Figure 1 of the supplemen-
tary material,46 which shows the MBPT(2) derivative with
and without higher-order terms and the energy derivative ob-
tained from a polynomial fit of the total energies for the core
IP of H2O; the difference between the MBPT(2) derivative
and the polynomial fit is indicative of the second-order orbital
relaxation effects.) For some IPs in Table I we used analytical
continuation. This means that we used the energy derivative
in only part of the interval between 0 and 1 to fit to a 5th
order polynomial. We then took the derivative of the poly-
nomial to perform the integration that yielded the IPs. The
energy derivatives and energies as a function of occupation
number for the second highest A1 IP in H2O, the second and

third highest A1 IP in CH2O, and the highest A1 IP in NH3

are given in the supplementary material.46 At certain values
of ni the MBPT(2) derivative behaves erratically, while the
Hartree-Fock derivative (−εi) remains smooth. This can be
explained by looking at the third term of Eqs. (9) and (10).
If two (generally positive) orbital energies of unoccupied or-
bitals are subtracted from two (generally negative) orbital en-
ergies of occupied orbitals, the denominator has a nonzero
value. However, if orbital i takes the role of an unoccupied or-
bital, its (generally negative) orbital energy is subtracted and
the denominator can become very small or even tend to zero.
For instance, for CH2O, we observe that the denominator in
term three of Eqs. (9) and (10) becomes zero at ni = 0.85 and
i = 3, k = 6, j = 7, and b = 13. The energy difference be-
tween orbitals k and i increases as a function of ni whereas
the energy difference between orbitals b and j decreases. At
ni = 0.85 the two energy differences are the same. The effect
is larger for higher-order terms because the sum of orbital en-
ergies in the denominator is squared. Note, the total energy
can also show irregularities (see Eq. (3) and the energy as a
function of occupation for the third highest A1 IP of CH2O
in the supplementary material46). Similar trends can occur for
excitation energies, see, for instance, the individual contribu-
tions to the A1 excitation in H2O displayed in the supplemen-
tary material.46

Table II shows the lowest vertical excitation energies
from the HOMO for H2O, CH2O, CH4, and NH3. For N2

excitations from the HOMO and an excitation from the sec-
ond highest occupied orbital (1
−

u ) are included. Again, the
�HF results represent excitation energies where orbital re-
laxation is accounted for (at the HF level). When correla-
tion is added to obtain the �MBPT(2) results, the excitation
energy increases (with the exception of the 1
−

u excitation
in N2). For H2O, CH2O, CH4, and N2 the largest deviation
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of the �MBPT(2) from the experimental value is 0.59 eV
(second lowest 1B2 of CH2O). For NH3, the deviation in-
creases to up to 0.93 eV. However, the calculation of verti-
cal excitation energies does not account for structural rear-
rangement in response to the electronic excitation. For NH3

the structural relaxation is large since the symmetry changes
from C3v in the ground state to D3h in the excited state. A
better bench mark for the �MBPT(2) results are vertical ex-
citation energies calculated with the EOM-CCSD method (in-
cluded in Table II), where correlation effects from single and
double excitation are accounted for to infinite order. For H2O,
CH4, NH3, and N2 the difference between the �MBPT(2) and
the EOM-CCSD values does not exceed 0.3 eV. Again, the N2
1
−

u excitation, which involves a πu to πg transition, is an ex-
ception, where the difference is larger (0.86 eV). Notice that
compared to the experiment both methods have rather large
deviations (0.31 eV EOM-CCSD and 0.55 eV �MBPT(2)).
For CH2O, where correlation effects are also expected to be
important to describe the π -system, differences to the EOM-
CCSD values up to 0.48 eV are detected.

We observe again, that the difference between the D-
�MBPT(2) and the �MBPT(2) method is non-negligible.
This is predominantly caused by residual orbital relaxation
not accounted for at the Hartree-Fock level. In addition,
potential inaccuracies are introduced due to the nature of
the Hartree-Fock potential,48 which generally predicts pos-
itive energies for unoccupied orbitals. This has been dis-
cussed previously12 and a piece-wise integration or a path
quadratic in λ has been suggested. Comparison of the D-�HF
to the �HF values in Table II shows that this error is small.
An exception is the second lowest 1A1 excitation in NH3.
This, however, reveals a different problem. The supplemen-
tary material46 contains the energy derivative and its contri-
butions as a function of the HOMO occupation number for
the second lowest 1A1 excitation in NH3. At 0.72 electrons
a discontinuity occurs in the orbital energy, which affects the
second-order curves as well. The discontinuity is caused by
a sudden change of the electronic state and introduces errors
in the numerical integration procedure (D-�HF as well as D-
�MBPT(2)). Further, Table II does not show a D-�HF or
D-�MBPT(2) value for the lowest excitation in CH2O. Here,
we also encounter a sudden change of the electronic state;
the supplementary material46 includes the energy derivative
and the energy as a function of HOMO occupation for the
HOMO-LUMO excitation in CH2O. At 0 occupation εi is
positive (typically εi is negative in the entire integration in-
terval). As soon as orbital i is partially occupied, the orbital
energy becomes negative since orbital i is now variationally
determined. Since the electronic state at the interval end point
differs from the electronic state in the remainder of the inter-
val, the numerical integration scheme cannot be applied. We
also encountered difficulties for N2, where we were unable to
converge to the correct Hartree-Fock energy for some frac-
tional occupation numbers. We used analytical continuation
as explained above. We notice that relaxation effects beyond
the Hartree-Fock level are particularly large for the N2

1
−
u

state, which may be rationalized by the fact that the excita-
tion involves the second highest occupied molecular orbital,
whereas all other excitations occur from the HOMO.

V. CONCLUSIONS

We have introduced a direct method to obtain second-
order IPs, EAs, and excitation energies, which we termed D-
�MBPT(2). The �MBPT(2) is defined as the second-order
extension of the �HF method. Instead of calculating energy
differences of total energies, energy derivatives with respect
to occupation numbers are evaluated, which can be regarded
as correlated orbital energies in the IP and EA case and a cor-
related orbital energy difference in the excitation case. In con-
trast to linear-response methods, relaxation is fully included
at the SCF level up to numerical precision through the inte-
gration of the energy derivatives over the appropriate occu-
pation range. Initial and final states are treated at the same
level of approximation. This is important when finite basis
sets are used, where the basis set is potentially better suited
to describe the ground than the ionized, attached, or excited
state if ground and excited states are not treated equally. The
D-�MBPT(2) method can be extended to higher-order per-
turbation by taking energy derivatives of higher-order energy
expressions with respect to occupation numbers and integrat-
ing over the appropriate parameter range.

The method described here is, in contrast to DFT meth-
ods, self-interaction free and applicable to charge-transfer ex-
citations. Since the D-�MBPT(2) is not limited to linear-
response problems, double or higher excitations energies can
be evaluated by specifying the appropriate excitation in the
SCF excited wave function. However, similar to CIS based
methods, if higher excitations mix with predominantly sin-
gle excited states, the D-�MBPT(2) method is not expected
to perform well. Even though the D-�MBPT(2) is presented
as a direct method to compute IPs, EAs, and excitation en-
ergies, the wave function of the excited state can be ob-
tained as a perturbative expansion of the relaxed Hartree-
Fock excited state. A disadvantage, in common with the �HF
method, is that the excited-state wave function is not orthogo-
nal to the ground-state wave function, whereas the exact wave
function is.

We applied the �MBPT(2) and D-�MBPT(2) methods
to calculate IPs and excitation energies of small molecules.
The �MBPT(2) values are the optimal values that can
be obtained with the numerical integration procedure (D-
�MBPT(2) method) and are very promising. For IPs, the per-
formance is slightly better than that of an iterative second-
order solution to the Dyson equation (TOEP2) using a tran-
sition operator method. For excitation energies, the compar-
ison to EOM-CCSD values shows deviations below 0.5 eV.
However, the use of the energy derivative in the numerical
integration scheme reveals several difficulties, which will be
subject of further research. First, residual relaxation effects
beyond the Hartree-Fock level are important. If the MBPT(2)
energy instead of the Hartree-Fock energy is made stationary
with respect to orbital change, the integration of the energy
derivative yields the �MBPT(2) values. Second, when the or-
bital has fractional occupation, the orbital resumes the role
of an occupied and an unoccupied orbital in the correlated
expression. This can cause the denominator to become small
and the second-order energy derivative to behave erratically,
particularly when higher-order terms are included, where the
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denominator is quadratic in the orbital energy difference.
Third, the Hartree-Fock solution has to be converged care-
fully to avoid sudden changes in the electronic solution as the
occupation number varies.
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APPENDIX: PARTIAL DERIVATIVES
FOR EXCITATION ENERGIES

The partial derivative of the second-order energy with re-
spect to nr with fractional occupation of orbital r and s is given
by

∂E(2)
c

∂nr

∣∣∣∣
0<ns<1

= 1

2

occ∑
j �=s

virt∑
bc �=rs
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− 2
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− 1

2
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+ higher − order terms.

The higher-order terms are written as

HOT|0<ns<1 = −1
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