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ABSTRACT
High-accuracy noncovalent interaction energies are indispensable as data points for potential energy surfaces and as benchmark values for
improving and testing more approximate approaches. The preferred algorithm (the gold standard) for computing these energies has been the
coupled-cluster method with singles, doubles, and perturbative triples [CCSD(T)] converged to the complete basis set (CBS) limit. However,
gold-standard calculations are expensive as correlated interaction energies converge slowly with the basis set size, and establishing the CBS
limit to better than 0.05 kcal/mol typically requires a CCSD(T) calculation in a basis set of at least triple-zeta quality. If an even higher
accuracy is required (for example, for the assignment of complicated high-resolution spectra), establishing a superior platinum standard
requires both a precisely converged CCSD(T)/CBS limit and the corrections for the core correlation, relativistic effects, and higher-order
coupled-cluster terms at least through the perturbative quadruple excitations. On the other hand, if a triple-zeta CCSD(T) calculation is not
feasible but a double-zeta one is, it is worthwhile to look for a silver standard that provides the most accurate and consistent approximation to
the gold standard at a reduced computational cost. We review the recent developments aimed at (i) increasing the breadth and diversity of the
available collection of gold-standard benchmark interaction energies, (ii) evaluating the best computational strategies for platinum-standard
calculations and producing beyond-CCSD(T) potential energy surfaces for spectroscopic and scattering applications of the highest precision,
and (iii) improving the accuracy of the silver-standard, double-zeta-level CCSD(T)/CBS estimates through the use of explicit correlation and
midbond basis functions. We also outline the remaining challenges in the accurate ab initio calculations of noncovalent interaction energies.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5116151., s

I. INTRODUCTION

A reliable description of intermolecular interactions is essential
for a large variety of problems in chemistry, physics, biology, and
materials science. Weak interactions between gas molecules give rise
to deviations from ideal gas law, which can be quantified, e.g., via
second and higher virial coefficients. The latter coefficients can be
used, for example, to establish a connection between pressure, tem-
perature, and the speed of sound in a gas that can be employed to
construct a new temperature standard.1 Weak interactions with a
background gas result in broadening and shifting of spectral lines,
and a combination of accurate measurements and calculations is
required to advance the description of spectral line shapes beyond
the conventional convolution of Lorentzian and Gaussian pictures.2

The intermolecular rovibrational bound states give rise to rich (and

hard to assign) infrared and microwave spectra,3 while the unbound
states determine cross sections for elastic and inelastic scattering
processes essential for astrophysical modeling.4 A delicate balance
of two-, three-, and higher-body interactions determines the stability
of molecular clusters,5 the structure and polymorphism of molecular
crystals,6 and the thermodynamical properties of liquids.7 Noncova-
lent interactions are an important factor in catalysis as they can pref-
erentially stabilize the transition state for a desired reaction.8 Inter-
actions within layered materials9 and between adsorbate molecules
and surfaces or porous media10 are crucial for the performance of
modern materials in a variety of applications ranging from semi-
conductors to carbon capture. Last but not least, weak interactions
stabilize the structures of proteins and nucleic acids and bind sub-
strates (as well as inhibitors) to the active sites of enzymes.11 Thus,
it is not a surprise that the field of intermolecular interactions has
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continually attracted widespread interest from experimentalists and
theorists alike.

From the computational perspective, the necessary prerequisite
to determining spectra, scattering cross sections, and many other
quantities of experimental interest is the generation (in whole or in
part) of the potential energy surface (PES), that is, a function that
expresses the energy of the complex in terms of the internal and rel-
ative geometries of its constituent molecules. This energy is a sum
of the energies of individual molecules (monomers), including the
energetic penalty incurred when the monomers adapt their geo-
metric configurations in the complex instead of their individually
optimized structures, and the actual interaction energy. The con-
struction of a PES involves three steps: establishing a grid of configu-
rations that span the surface, interaction energy calculations for each
grid point, and a fitting or interpolation of an analytical function that
provides a reasonable PES approximation in between the computed
grid points as well as at larger intermolecular separations. Recently,
significant advances have been made on optimizing the selection of
grid points,12 making the fitting more robust,13 and automating the
whole process of PES construction;14,15 however, the vast majority
of computer time still needs to be spent on the middle step, that
is, electronic structure calculations on each configuration from the
grid. While the individual interaction energies can be computed
directly via symmetry-adapted perturbation theory (SAPT),16 it is
more common to obtain these values via subtraction of monomer
energies from the total energy of the complex, within the so-called
supermolecular framework. In such a case, the accuracy of interac-
tion energy hinges on a cancellation of errors (which arise due to
the use of an approximate electronic structure theory and an incom-
plete basis set) between the quantities that are subtracted. Obviously,
this cancellation is much easier if the individual errors are small to
begin with: this is one of the reasons why intermolecular interac-
tion energies place particularly high demands on the accuracy of
the underlying electronic structure theory. The other reason is the
van der Waals dispersion forces which arise entirely out of electron
correlation and thus require a high-level account of the correlation
energy.

Except for few-electron complexes where full configuration
interaction (FCI) calculations are possible, the most successful strat-
egy for computing accurate correlated interaction energies has been
the coupled-cluster (CC) approach.17 In particular, the coupled-
cluster variant with single, double, and perturbative triple excitations
[CCSD(T)]18 has been termed the gold standard of electronic struc-
ture theory as it provides consistently accurate interaction energies
for closed-shell complexes. In fact, due to favorable error cancella-
tion, CCSD(T) typically performs in this context just as well as the
variant with full iterative triples, CCSDT.19 It should be noted that,
when the interacting molecules cannot be qualitatively described by
individual determinants, single-reference CC methods in general,
and perturbative variants such as CCSD(T) in particular, are unable
to provide reliable interaction energies. In such a case, computing a
high-accuracy PES is a much more difficult task, and multireference
electronic structure methods of benchmark quality are still under
active development—see, e.g., a recent perspective for a review.20

It might be noted in passing that the CC methods have the attrac-
tive property that the extent of multireference character for a prob-
lematic system can be inferred from examining the cluster ampli-
tudes. In this perspective, we will be concerned with single-reference

complexes so that CCSD(T) is indeed a reliable gold standard as
long as the results are converged to the complete basis set limit
(CBS).

Computing a gold standard CCSD(T)/CBS interaction energy
is an expensive task due to both an unfavorable N7 computa-
tional scaling of CCSD(T) with the system size and a slow basis set
convergence of correlated interaction energies. The scaling can be
reduced by exploiting spatial locality of electron correlation; how-
ever, the errors of the local approximation sometimes exceed the
accuracy one would expect from the gold standard interaction ener-
gies.21 Nevertheless, local CCSD(T) variants are undergoing con-
stant improvement22–25 and are on the verge of becoming a reliable
source of benchmark-quality gold standard estimates. The basis set
convergence of CCSD(T) interaction energies can be improved by a
number of techniques—see Ref. 26 for a recent review. These tech-
niques can be used separately or in combination and include the
composite MP2/CBS+δ[CCSD(T)] treatment {where the easier-to-
compute CBS limit of the second-order Møller-Plesset perturbation
theory (MP2) is augmented with a δ[CCSD(T)] = CCSD(T)−MP2
correction computed in a moderate basis set}, CBS extrapolations,
midbond functions, and various variants of the explicitly correlated
CCSD(T)-F12 approach.27,28 Even with these enhancements, one
typically cannot avoid performing a CCSD(T) calculation in at least
a partially augmented triple-zeta basis set: otherwise, the basis set
truncation errors overwhelm the intrinsic errors of the CCSD(T)
approach.

The gold standard CCSD(T)/CBS estimates are a centerpiece
of the field of accurate ab initio studies of weakly interacting com-
plexes and a centerpiece of this perspective. In addition to numerous
investigations of PESs for individual systems of experimental inter-
est, the gold standard calculations have led to the establishment
of benchmark noncovalent databases that compile accurate inter-
action energy values for a diverse selection of complexes and con-
figurations. The available noncovalent databases have been recently
reviewed in Refs. 26 and 29: the most widely employed sets include
the S2230 and S6631 databases of the Hobza group. In the last couple
of years, benchmark databases have grown larger and more diverse
in order to meet the growing demands of the community as var-
ious more approximate (but much less computationally demand-
ing) approaches are formulated and tested against high-accuracy
ab initio data. Such approximate but efficient techniques may
be based on density functional theory (DFT),32 semiempirical
methods,33 or machine learning (ML).34 At the same time, one fre-
quently needs to go either above or slightly below the gold stan-
dard. For example, using PESs to reproduce and interpret high-
resolution spectroscopic data might call for interaction energies
beyond the CCSD(T)/CBS level. Thus, it has been worthwhile to
establish a platinum standard of interaction energy calculations of
subspectroscopic accuracy. On the other hand, for larger complexes,
a CCSD(T) calculation in a triple-zeta basis set, required by the
gold standard, might be unaffordable and one needs to resort to
CCSD(T)/CBS estimates that only require a CCSD(T) calculation
in a double-zeta basis set or even estimates that do not require a
CCSD(T) calculation at all. For this purpose, silver, bronze, and even
pewter standards of interaction energy calculations have been des-
ignated,35 with the goal of providing the most accurate approxima-
tions to the gold standard at a given (significantly reduced) level of
computational complexity.
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The aim of this perspective is to describe the current state of
the art for the entire family of “precious metals” standards of inter-
molecular interaction energies. Therefore, after a brief introduction
to the methodology of interaction energy calculations in Sec. II, we
continue by reviewing recent progress in gold-standard calculations,
with emphasis on the development of diverse and balanced bench-
mark databases and accurate PESs for systems of experimental inter-
est, in Sec. III. We then move on to calculations of even higher accu-
racy, illustrating some important applications of platinum-standard
interaction energies in Sec. IV. Finally, in Sec. V, we review the estab-
lishment and refinement of the silver-standard level of theory as a
cost-effective alternative to the gold standard. In all cases, we try to
focus on the current directions of research as well as the remain-
ing challenges that will likely be addressed in the near future. As the
accuracy of more approximate approaches (for example, those based
on DFT) has been steadily improving,36,37 the bronze and pewter
standards do not provide benchmark interaction energies with suf-
ficient precision to evaluate the best performers. Therefore, the pri-
mary focus of this perspective is the levels of accuracy from the silver
standard onward.

II. METHODOLOGY
For a given complex A–B, the interaction energy calculation

at the silver, gold, or platinum level requires three CCSD(T) runs18

combined within the supermolecular framework38

ECCSD(T)
int = ECCSD(T)

A-B − ECCSD(T)
A − ECCSD(T)

B . (1)

The energies for the individual subsystems A and B are evaluated
at their geometries adopted in the complex, which might not be
the same as the optimal geometries for isolated monomers. The
energetic penalty of distorting A and B to their geometries in the
complex, called the deformation energy,39 can (and often should) be
included separately; however, in this perspective, we will focus on
the computation of the interaction energy proper, that is, Eq. (1)
[which can be used with CCSD(T) or with any other electronic
structure method, for example, MP2]. The typical choice of basis
sets used to perform the CCSD(T) computations is the correlation-
consistent cc-pVXZ family of Dunning and coworkers,40 enhanced
with diffuse functions to form the completely augmented aug-cc-
pVXZ ≡ aXZ sets41 or the partially augmented “calendar” bases
such as jun-cc-pVXZ.42 In order to achieve a cancellation of most
of the electronic structure and basis set errors between the quan-
tities subtracted in Eq. (1) and obtain an interaction energy that
goes to zero at large A–B separations, the basis functions centered
on molecule A have to be the same in the calculations of ECCSD(T)

A-B
and ECCSD(T)

A , and those centered on B have to be the same in
the calculations of ECCSD(T)

A-B and ECCSD(T)
B [note that another pos-

sible issue that would break the correct long-range limit could be
the use of a size-inconsistent approach, such as a truncated con-
figuration interaction method, in place of CCSD(T)]. However, if
the ECCSD(T)

A and ECCSD(T)
B calculations contain only the subsystem’s

own basis functions, another problem appears: the description of,
say, A is more complete in ECCSD(T)

A-B than in ECCSD(T)
A , thanks to

the additional flexibility afforded by the basis functions centered
on the other subsystem. This inconsistency is called the basis set

superposition error (BSSE), and the most popular remedy for it is
the counterpoise (CP) correction of Boys and Bernardi.43 In the CP-
corrected supermolecular framework, all three quantities in Eq. (1)
are computed in the full basis set of the complex, that is, the cal-
culation of ECCSD(T)

A includes ghost basis functions centered at the
locations of B’s nuclei in the complex and vice versa. As the basis set
is enlarged, the CP-corrected and uncorrected interaction energies
[the latter obtained from Eq. (1) with the calculations of ECCSD(T)

A
and ECCSD(T)

B utilizing only the basis set of the subsystem] typically
bracket the CBS value of ECCSD(T)

int , converging there from below
(CP-uncorrected) and above (CP-corrected). This behavior has two
consequences. First, some authors have argued that the CP scheme
overcorrects the true BSSE44 and the merits of the counterpoise
correction were a hot topic in the literature some time ago. Sec-
ond, a “half-corrected” scheme, that is, the arithmetic mean of the
CP-corrected and uncorrected interaction energies,45,46 might some-
times be more accurate than either variant alone. On the practical
side, an extensive comparison of CCSD(T)/CBS estimates obtained
from CP-corrected, uncorrected, and half-corrected calculations was
performed by Burns et al.,47 concluding that the averaged scheme
avoids the worst errors incurred by either variant alone; however, in
most cases, the fully corrected and half-corrected approaches per-
form similarly well and either one can be recommended. As the
fully CP-corrected interaction energy calculations are currently the
most prevalent, throughout the rest of this perspective, all compu-
tations will be assumed CP-corrected unless explicitly stated other-
wise. Another point that, in our opinion, tips the scales toward the
fully CP-corrected approach is that it is the only one compatible with
the addition of extra basis functions centered on the intermolecular
bond.48

For the gold and silver standard accuracy, an approximation
to CCSD(T)/CBS is all that is needed, and it is normally suffi-
cient to perform the CCSD(T) calculations of Eq. (1) within the
frozen core approximation, where only the valence electrons are
correlated. However, going beyond the gold-standard level of the-
ory requires a concerted effort as several neglected contributions
might be of comparable size: the core-core and core-valence correla-
tion, the coupled-cluster excitations beyond CCSD(T), the relativis-
tic effects, and sometimes even the quantum electrodynamics (QED)
term. At the same time, residual errors of the leading, frozen-core
CCSD(T)/CBS term tend to be comparable to the corrections men-
tioned above, and the generation of a PES beyond the gold standard
of accuracy requires both a further refinement of the CCSD(T)/CBS
estimate and the inclusion of terms beyond the frozen-core CCSD(T)
level.

If one sets out to compute, say, a double zeta-level CCSD(T)
interaction energy, there are many variants to choose from, and
all of them are of comparable computational complexity. One can
opt for conventional CCSD(T) or for any variant of explicitly cor-
related CCSD(T), such as the CCSD(T)-F12a, CCSD(T)-F12b,49,50

or CCSD(F12∗) (T) ≡ CCSD(T)-F12c51 approximations. The triples
contribution in an F12 calculation can be included as-is or scaled
to approximately account for the lack of explicit correlation in (T).
The scaling factor is commonly taken as the ratio of MP2-F12
and MP2 correlation energies,50 and when the ratio obtained for
the dimer is also used in monomer calculations to maintain size
consistency,52 such an approach is denoted (T∗∗).53 Alternatively,
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FIG. 1. Summary of the silver, gold, and platinum stan-
dards described in this perspective, providing successive
approximations to the FCI/CBS interaction energy.

the triples scaling factor can be chosen as the ratio of the correla-
tion energies from CCSD-F12b (or CCSD-F12c) and conventional
CCSD.54 Instead of the standard aDZ basis set, one might opt for
the cc-pVDZ-F12 set specifically developed for F12 calculations55 or
even its aug-cc-pVDZ-F12 counterpart with additional diffuse func-
tions added.56 The atom-centered basis set might be supplemented
by midbond functions. Basis set superposition error might be alle-
viated by the CP correction, but uncorrected or half-corrected cal-
culations are also possible. Finally, for any choice described above,
one might perform a simple CCSD(T) calculation or a composite
MP2/CBS+δ[CCSD(T)] one, with the MP2/CBS limit established
with either conventional MP2 or MP2-F12, with or without a com-
plete basis set extrapolation. Thus, a “double zeta-level CCSD(T)
interaction energy” might mean many different things, and we need
to be precise when defining the actual theory and basis set level des-
ignated as the precious-metal standard. This issue becomes even
more pronounced in the case of the gold standard which is collo-
quially known as simply CCSD(T)/CBS. Sections III–V of this per-
spective will review the research that established what it means to
converge the CCSD(T) interaction energy to the CBS limit suffi-
ciently well to be accepted as the gold (or silver) standard, and what
precise combinations of CCSD(T)/CCSD(T)-F12 variants, basis sets,
and other details mentioned above are the most effective in achiev-
ing the required accuracy at an optimal computational cost. Here, we
just summarize the recommendations that have been established and
give the most important examples of precise theory and basis set lev-
els that have been deemed worthy of a platinum/gold/silver standard
designation. These examples as well as representative applications of
precious-metal standards described in this work are summarized in
Fig. 1.

The most common precise designation of the gold standard
CCSD(T)/CBS approximation35 is MP2/(aTZ,aQZ)+δ[CCSD(T)]/
aTZ, where the notation (aXZ, aYZ) signifies that the two sets have
been employed in the standard X−3 extrapolation of the correlation
energy contribution.57,58 The Hartree-Fock part of the MP2 inter-
action energy is usually quite well converged in the aQZ basis and
no extrapolation is performed for this part. A platinum-standard

calculation needs to extend the coupled-cluster level at least to
CCSDT(Q),59 that is, include full triple and perturbative quadru-
ple excitations on top of CCSD(T). In addition, the leading frozen-
core CCSD(T) term has to be converged to CBS even tighter than
for the gold standard, and corrections for the core-core and core-
valence correlation, relativistic effects, and possibly even terms
neglected in the Born-Oppenheimer approximation60 need to be
included. Such a composite designation of the platinum standard
is inspired by the high-accuracy composite approaches to thermo-
chemistry, such as HEAT (high accuracy extrapolated ab initio ther-
mochemistry),61 the Weizmann-n (Wn) family of methods,62 the
Feller-Peterson-Dixon algorithm,63 and the correlation consistent
composite approach (ccCA).64 The silver standard has been des-
ignated in Ref. 35 as the DW-CCSD(T∗∗)-F12/aDZ level, employ-
ing the dispersion-weighted combination of CCSD(T∗∗)-F12a and
CCSD(T∗∗)-F12b proposed in Ref. 53. Several other possible silver
standards using double-zeta basis sets with midbond functions will
be introduced in Sec. V.

III. THE GOLD STANDARD—CCSD(T)
AT THE COMPLETE BASIS SET LIMIT
A. Designation of the gold standard

We envision the gold standard of interaction energy calcula-
tions to be suitable for all benchmarking applications, where the
quality of, e.g., DFT or ML approaches is assessed, and most PES
applications, where the experimental spectroscopic, scattering, or
thermophysical data are to be recovered from the ab initio PES.
At present, the strictest challenge to the former requirement arises
from the recent combinatorially optimized density functionals such
as ωB97M-V,65 which attains a root mean standard deviation of
0.18 kcal/mol on an extensive set of (comparatively) “easy” dimers.37

The severity of the latter requirement obviously varies, and many lat-
est high-resolution spectroscopic and scattering experiments neces-
sitate going beyond the gold standard of theory, as will be illustrated
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in detail in Sec. IV. Overall, it is clear that the successful gold stan-
dard needs to be accurate, on the average, to well below 0.1 kcal/mol:
one would actually prefer the errors to stay within 0.05 kcal/mol even
for (most) outliers. At this level of precision, it is quite nontrivial
to even assess the performance of a gold standard candidate—we
need something better than gold standard for reference! It would
be highly desirable to obtain such a reference from experiment, but
it is immensely difficult.66 Interaction energies are not directly mea-
surable, and other experimental quantities such as spectra or cross
sections require further calculations (such as solving the nuclear
Schrödinger equation) beyond the PES construction (which brings
about other sources of uncertainty besides the interaction energy
itself) and always probe more than a single geometry on the PES.
Thus, our best option to assess potential gold-standard candidates
is by comparison to even higher-level ab initio interaction energies
and, as of right now, there is exactly one benchmark database that
has sufficient accuracy to serve as a reference: A24.67,68

The current best-estimate A24 interaction energies contain the
frozen-core CCSD(T)/CBS term extrapolated from the aQZ and a5Z
bases (a5Z and a6Z for selected systems)47 enhanced by the correc-
tions for core correlation, relativistic effects, and an estimate of the
higher-order coupled-cluster terms from the CCSDT(Q)59 calcula-
tions. Thus, these energies are sufficiently accurate to both judge the
performance of the CCSD(T)/CBS treatment and evaluate various
approximations to this CBS limit. Note that while the gold stan-
dard level is often referred to simply as CCSD(T)/CBS, its practical
realization requires a particular, sufficiently precise, way to estimate
the CBS limit using finite-basis calculations. In fact, the screening
of potential gold-standard candidates should be performed in refer-
ence to a precise CCSD(T)/CBS estimate (such as the one computed
in Ref. 47 and adopted in Ref. 68) with the higher-level correc-
tions omitted to keep the candidate and the reference on an equal
footing. For the A24 database, such a screening was performed in
Ref. 69 for conventional CCSD(T) and CCSD(T)-F12, and Ref. 70
extended this screening to bases with midbond functions. The results
of Ref. 69 show that the CCSD(T) estimates that require only aDZ-
level coupled-cluster calculations are quite accurate on the aver-
age {with the mean unsigned error (MUE) of only 0.03 kcal/mol
for MP2/(aTZ,aQZ)+δ[CCSD(T)]/aDZ}; however, individual errors
extend all the way from −0.1 to 0.1 kcal/mol, so this level of theory
cannot be recommended as an unambiguous gold standard. In con-
trast, in the aTZ basis sets, both straight-up F12 calculations [e.g.,
CCSD(T∗∗)-F12b/aTZ49,50] and composite conventional ones {e.g.,
MP2/(aTZ,aQZ)+δ[CCSD(T)]/aTZ, the originally designated gold
standard from Ref. 35} are capable of bringing the MUE down to
0.01 kcal/mol, with all results within 0.05 kcal/mol of the CBS ref-
erence. Therefore, any of these variants can be adopted as the gold
standard.

We will review the strategies for improving gold-standard
interaction energies, and the applications for which such improve-
ment is crucial, in Sec. IV, and the most accurate double-zeta-level
approximations to the gold standard in Sec. V. For now, we go back
to the two primary areas of gold-standard applications stated at the
beginning of this section: the construction of benchmark nonco-
valent databases and the generation of accurate PESs for individ-
ual complexes. Both areas have witnessed an enormous progress in
recent years, and it is worthwhile to summarize the most significant
new developments.

B. Benchmark noncovalent databases
We have established how to calculate a gold-standard interac-

tion energy for an individual structure of an intermolecular complex.
Now, we have to consider how to select the structures and com-
plexes that make up a noncovalent database suitable for benchmark-
ing applications, that is, sufficiently diverse and balanced. While the
early benchmark databases such as the widely popular S22 set30

were composed of a handful of (mostly organic) dimers in their
respective van der Waals minimum geometries, it was realized soon
afterward that the off-minimum radial and angular configurations,
including long-range (nearly asymptotic) and short-range (repul-
sive) ones, are just as important as the minimum structures. In fact,
when constructing a dataset, it is not even crucial to precisely pin
down the optimal geometry of the complex (unless the geometry
itself serves as a reference71–73), as an adequate coverage of dif-
ferent PES regions is much more important than having a single
point at the actual minimum configuration. As a result, most of the
newer databases contain also off-minimum configurations (radially
displaced, angularly displaced, or both). A way to achieve the ulti-
mate configurational diversity is to pick the entire set of grid points
used to construct an ab initio PES for a given system, or the full
set of configurations that are attained in actual systems (such as
the entire set of amino acid sidechain-sidechain contacts found in
the Protein Data Bank74). Beyond the geometries of a single system,
it is imperative to build a database out of complexes with differ-
ent interaction types. One particularly useful way of elucidating the
physical origins of interaction and classifying systems into interac-
tion types is symmetry-adapted perturbation theory (SAPT).16,75,76

The relative importance of three possible attractive SAPT compo-
nents, electrostatics, induction, and dispersion, can be displayed and
analyzed by means of ternary diagrams35,77 so that the relative cov-
erage of the diagram is a measure of the database diversity. It might
be noted in passing that the presence of very different interaction
strengths (both between different complexes and between different
radial configurations of the same system) makes it nontrivial to select
a suitable statistical measure to quantify the agreement of an approx-
imate approach with the benchmark values. The commonly used
mean unsigned error (MUE), also termed mean absolute deviation
(MAD), is not a good description of structures with very different
interaction energies, and the mean unsigned relative error (MURE)
runs into a problem around the points where the PES crosses zero
as small absolute errors can lead to very large relative errors in
this case. Several improved metrics have been proposed,78–81 and
the reader is referred to Ref. 26 for a more detailed discussion of
the database diversity and performance assessment. Overall, sev-
eral highly diverse benchmark databases have been constructed in
recent years37,81,82 by combining (and sometimes extending) smaller
sets available in the literature: each of these composite datasets con-
tains more than 1000 accurate interaction energies. An even larger
dataset, with 247 560 interaction energies, has been created in order
to improve the MP2 theory with neural network-optimized spin
component scaling;83 however, this set can hardly be called balanced
as nearly half of the structures involve a water molecule as one of the
subsystems.

In parallel to the improvements in the database scope and
diversity, the accuracy of some older benchmark interaction ener-
gies has undergone improvement as well. At the beginning of this
decade, quite a bit of effort was directed into refining the original S22
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benchmark data30 as some of them were obtained at the MP2/(cc-
pVTZ,cc-pVQZ)+δ[CCSD(T)]/cc-pVDZ level that, as we will see in
Sec. V, is not even up to the silver standard of accuracy. The cur-
rently established benchmark values compiled in Ref. 84, termed
S22B, have been computed84–87 at several different levels of basis set
saturation: importantly, the δ[CCSD(T)] term has been obtained in
at least the aTZ basis set for all 22 systems. The differences between
the refined S22B values and the original benchmark range up to
nearly 0.7 kcal/mol, confirming that the original data of Ref. 30 were
not up to current benchmark standards. Besides the S22 set, several
other popular databases such as S66x831 and WATER2788 have been
recently refined using explicitly correlated coupled-cluster calcula-
tions;54,89–91 see Sec. V for more details. It should be stressed that,
according to our theory level classification, the existing benchmark
databases are split into gold-standard and silver-standard data. In
fact, complete gold-standard calculations would be too costly for
some of the largest databases such as the amino acid sidechain-
sidechain interactions (SSI) set of Ref. 74. The bare minimum that
can be considered as silver-standard benchmark accuracy is the
inclusion of the CCSD(T) interaction energy in at least a partially
augmented double-zeta basis, in either stand-alone CCSD(T)-F12
calculation or the composite MP2/CBS+δ[CCSD(T)] one (Sec. V
will examine the optimal strategies for computing silver-standard
interaction energies). While the silver-standard accuracy is sufficient
for current applications of the benchmark datasets, some potential
upgrades to gold-standard accuracy might be pursued in the future.
Overall, in our opinion, the existing collection of benchmark nonco-
valent databases is sufficiently accurate and sufficiently broad for the
assessment and development of new DFT, wavefunction, semiem-
pirical, and machine-learning approaches for ground-state closed-
shell complexes involving small and medium-sized molecules com-
posed of light atoms; however, the extensions to open-shell systems,
excited states, heavy atoms, and large systems still require significant
progress. The most notable applications of benchmark noncovalent
databases have been reviewed, e.g., in Refs. 26, 29, and 36; see also
Refs. 37 and 92.

C. Accurate potential energy surfaces
The other key application of gold-standard interaction ener-

gies is the development of spectroscopically accurate PESs for indi-
vidual systems of interest. While going beyond CCSD(T)/CBS is
sometimes necessary for the highest accuracy (some relevant exam-
ples will be discussed in Sec. IV), there exists a large class of
complexes (roughly speaking, those containing 2–6 nonhydrogen
atoms) for which post-CCSD(T) calculations on the entire set of
PES grid points are not feasible; however, the CCSD(T)/aTZ or even
CCSD(T)/aQZ calculations (with or without F12 and/or midbond
functions) can be carried out with relative ease and used to gen-
erate all data points. With the recent progress in the automated
PES generation14,15 and the improved understanding of the CBS
convergence of finite-basis CCSD(T) interaction energies (brought
about by many developments reviewed in this perspective), the
construction of gold-standard PESs is nowadays close to a routine
task. Thus, ab initio electronic structure theory has happily deliv-
ered on the numerous requests for accurate intermolecular PESs,
with applications to spectroscopy, scattering, virial coefficients,
viscosities, and condensed phase properties. In the rest of this

section, we will review a few of these PESs. Their selection is moti-
vated only by their subjective appeal to us, and the list is far from
complete.

The particular significance of interaction potentials for water
stems from both its special role in sustaining life and its unusual
physical properties in the liquid (such as the density maximum at
4 ○C). While an accurate description of any condensed phase
requires at least the three-body potential (that is, the account
of nonadditive interactions in molecular trimers) in addition
to the two-body one,6 water is a particularly demanding case
where the three-body interactions are unusually significant and
even the four-body ones are not entirely negligible.93 There-
fore, both two-body and three-body potentials for water have
attracted widespread attention. While reaching this point required
many years of development by multiple research groups, ab initio
potentials for (H2O)2

94 and (H2O)3
95 are now available at

the gold-standard level of theory including all internal degrees
of freedom for the water molecules. The two-body potential94

was built from 42 508 interaction energies computed at the
CCSD(T)/(aTZ+(3s3p2d1f),aQZ+(3s3p2d1f)) level, where the addi-
tional (3s3p2d1f) basis functions are centered on the midbond.
The three-body potential95 employed 12 347 trimer interaction
energies obtained with CCSD(T)/aTZ+(3s3p2d1f). These poten-
tials have been successful at reproducing a range of experimen-
tal quantities, from strictly dimer data such as the vibration-
rotation-tunneling spectrum96 and the second virial coefficient97

to the structure and energetics of small water clusters5,98,99 to prop-
erties of liquid water such as density and radial distribution func-
tions.100 Several other CCSD(T)-level PESs for water have been
introduced101–103—see Ref. 104 for a review.

At the beginning of this century, a strong driving force for
the generation of ab initio PESs was the spectroscopy of molecules
embedded in superfluid helium nanodroplets.105 Many molecules
were investigated in this way, and carbonyl sulfide (OCS) has
been one of the most popular as it is quite rigid, linear (so the
spectra are simple), and polar (so it is a strong chromophore in
both microwave and infrared regions). One of the first experi-
ments compared the infrared spectrum of OCS in 4He and 3He
nanodroplets, with the sharp rotational lines in the former envi-
ronment confirming its superfluid nature.106 Early on, it seemed
that the gold-standard level of theory is not absolutely necessary
for the He-OCS interaction since the fourth-order Møller-Plesset
perturbation theory MP4/aTZ+(3s3p2d) potential has proven
quite successful at reproducing experimental vibrational shifts in
Hen-OCS clusters with n = 1, . . ., 8.107 Later, a gold-standard four-
dimensional He-OCS PES has been constructed by Li and Ma108

employing the CCSD(T)/aQZ+(3s3p2d1f1g) theory and basis set
combination, resulting in substantially improved agreement with
experimental microwave and infrared transitions relative to the
potential of Ref. 107. Helium is not the only important interact-
ing partner for OCS: the availability of high-resolution infrared109

and microwave110 spectra of OCS in para- and ortho-hydrogen
clusters prompted the development of a six-dimensional H2-OCS
PES at the gold-standard CCSD(T)-F12a/aTZ level.111 The (OCS)2
homodimer is also of significant interest to spectroscopy, and the
interplay of its polar and nonpolar minima has been elucidated
with the help of a CCSD(T)-F12b/cc-pVTZ-F12 potential energy
surface.112

J. Chem. Phys. 151, 070901 (2019); doi: 10.1063/1.5116151 151, 070901-6

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics PERSPECTIVE scitation.org/journal/jcp

Another source of demand for high-level PESs is the astro-
physical community, where accurate scattering cross sections are
required to understand and model the rates of collisional processes
occurring in various interstellar objects.113 One of the collisional
partners is usually helium or H2, but the other partner can be
selected from the long and ever-growing list of molecules detected
in interstellar media. An important and unusual (from the perspec-
tive of Earth) class of such systems are linear carbon chains, both
unsubstituted and capped at one end by hydrogen or another atom.
The astrophysical applications have prompted the creation of several
high-accuracy PESs involving such chains. The linear tricarbon (C3)
molecule is an important member of this class, and in the past, our
group has contributed to the development of a new He–C3 poten-
tial that was employed to compute rate coefficients for the rotational
excitation and deexcitation of C3 by helium114 [the underlying PES
actually went beyond the gold standard and contained contributions
from coupled-cluster excitations beyond CCSD(T)]. More recently,
Walker et al. have constructed rigid C6H−–H2 and C6H−–He
potential surfaces at the gold-standard CCSD(T∗)-F12b/cc-pVTZ-
F12 level.115 Interestingly, the long and highly anisotropic C6H−

anion interacts very differently with helium and hydrogen, lead-
ing to strongly different rotationally inelastic cross sections. We
mention in passing another interesting astrophysically motivated
PES, the very recent CCSD(T)-F12b/(cc-pVTZ-F12,cc-pVQZ-F12)
potential for a helium atom interacting with a propylene oxide
molecule.116 Propylene oxide is the first chiral organic molecule
detected in the interstellar space,117 and the measurement and mod-
eling of its spectral and collisional properties might shed some
light onto the (likely extraterrestrial) origins of the homochirality of
life.118,119

We conclude this section by mentioning a few of the largest
systems for which gold-standard (or close) PESs have been con-
structed. The sizes of these complexes illustrate the current com-
putational capabilities for running a large number of triple-zeta
CCSD(T) calculations and manipulating the resulting data (for
example, fitting an analytical PES expression). For CCSD(T) cal-
culations with the full aTZ basis set on all atoms, the largest
system with a PES is probably the ethane dimer, for which the
MP2/(aQZ,a5Z)+δ[CCSD(T)]/(aDZ,aTZ) potential has been devel-
oped by Hellmann120 and used to compute the second virial coef-
ficient and some transport properties of dilute ethane gas. In the
partially augmented haTZ basis (with diffuse basis functions on
nonhydrogen atoms only), one should mention the CCSD(T)-F12a
PES for the formic acid dimer by Qu and Bowman.121 While
this surface does not extend to all possible geometries, it is suf-
ficiently broad to cover not only all normal modes of the com-
plex but also the entire pathway for the concerted double pro-
ton tunneling between the HCOOH molecules. Quite surprisingly,
the largest atom-molecule system with a gold-standard PES comes
from a 10-year old paper on the benzene-argon complex,122 with
the ab initio data obtained at the CCSD(T)/aTZ+(3s3p2d1f1g)
level. The interaction energies turned out to be very similar to
those obtained in an earlier CCSD(T)/aDZ+(3s3p2d1f1g) study;123

therefore, subsequent PES calculations on complexes between a
rare gas atom and an aromatic molecule tend to use the aDZ
basis supplemented by bond functions.124,125 To our knowledge,
no gold-standard PESs for interactions between two aromatic
molecules exist; however, all symmetry-nonequivalent close dimers

in the benzene crystal have been studied at the CCSD(T)-F12a/aTZ
level.126

IV. THE PLATINUM STANDARD—WHEN CCSD(T)
IS NOT ENOUGH
A. What is a good platinum standard?

Even the gold-standard CCSD(T)/CBS interaction energies are
not always accurate enough to interpret high-resolution spectra or
scattering cross sections. However, as already mentioned, going
beyond the gold standard requires a simultaneous further refine-
ment of the CCSD(T)/CBS leading term and the inclusion of cor-
rections beyond the frozen-core CCSD(T) level. As far as the former
improvement is concerned, one needs to go to basis sets of aug-
mented quintuple-zeta (or even sextuple-zeta) quality, combined
with CBS extrapolation, the F12 approach, and/or midbond func-
tions. The best strategy for pinpointing an ultra-precise CBS esti-
mate is actually an interesting question. While explicit correlation is
so effective in improving small- and medium-basis estimates, con-
ventional CCSD(T) calculations in the largest possible bases are
sometimes superior to the CCSD(T)-F12 calculations in the largest
basis sets available at that level.127,128 The primary reason for this
somewhat unexpected observation is the residual inaccuracies of the
a/b/c approximations to full CCSD(T)-F12. Overall, the accuracy of
both CCSD(T) and CCSD(T)-F12 is strongly enhanced by the pres-
ence of bond functions, and ultra-precise CBS estimates might need
ultra-large midbond sets. Below, we focus on the additional contri-
butions past the CBS limit of the frozen-core CCSD(T) interaction
energy.

The interaction energy contribution arising from the correla-
tion of core electrons is easy to compute as the difference between
the all-electron and frozen-core CCSD(T) values, obtained in a basis
set that includes compact functions optimized for core correla-
tion, such as the aug-cc-pCVXZ and aug-cc-pwCVXZ sequences
of Dunning and co-workers.129 The relativistic correction can be
approximated at the scalar one-electron level using the second-
order Douglas-Kroll-Hess Hamiltonian130 or, more recently, the
spin-free exact two-component theory in the one-electron approx-
imation (SFX2C-1e or X2C for short).131 However, the two-
electron relativistic interaction energy corrections, such as the spin-
(own)-orbit term, might also be nonnegligible.132 The effects of
higher-order coupled-cluster excitations might be the most diffi-
cult to compute due to the steep computational scaling increase
with every excitation level included. Overall, there are two strate-
gies for computing post-CCSD(T) interaction energy terms: full-
configuration-interaction (FCI) calculations for few-electron sys-
tems and coupled-cluster calculations with full triples (CCSDT),
perturbative quadruples [CCSDT(Q)], or even full quadruples
(CCSDTQ) for systems where FCI is not feasible. For the lat-
ter strategy, it is important to identify the theory level that pro-
vides consistent improvement over the gold-standard CCSD(T)
calculation—a level that can be recommended as the “platinum
standard” for computing interaction energies of subspectroscopic
accuracy.

The importance of the CCSDT, CCSDT(Q), and CCSDTQ
interaction energy corrections was first studied on individual sys-
tems, mainly rare gas dimers.133,134 The first systematic study of these
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corrections over a range of systems (including the newly established
A24 database of 24 small complexes67) was performed by Hobza
and co-workers.19,135 By comparison with interaction energies com-
puted with the full inclusion of pentuple excitations (CCSDTQP) or
with FCI for the smallest systems, Šimová et al. showed19 that the
inclusion of full noniterative triples does not provide a systematic
improvement over CCSD(T). In order to reach a “platinum stan-
dard” level of electron correlation, one needs to include connected
quadruple excitations. Fortunately, the perturbative treatment of
quadruples via the CCSDT(Q) approach59 provides an excellent
approximation to full iterative CCSDTQ results. Thus, CCSDT(Q)
[more precisely, the composite CCSD(T)/CBS+δT+(Q) treatment] is
a good candidate for the platinum standard level of theory, but what
basis sets are appropriate for computing the very expensive δT+(Q)
= CCSDT(Q)−CCSD(T) correction?

In the benchmark studies of the Hobza group,19,67,135 the post-
CCSD(T) corrections were computed using very small bases 6-
31G∗(0.25) and 6-31G∗∗(0.25,0.15) (with the numbers in parenthe-
ses indicating the altered exponents of the polarization functions
relative to 6-31G∗∗)—only a limited subset of complexes employed
the somewhat larger aDZ basis. However, the δT+(Q) correction,
just like the δ[CCSD(T)] one,84,136 strongly varies with the basis
set and requires at least the aTZ basis to obtain a reasonably sat-
urated value. This behavior of δT+(Q) was established by one of
us and co-workers137 on a set of 21 small weakly bound com-
plexes. Relative to the benchmark δT+(Q) values computed in basis
sets aTZ and larger, the 6-31G∗∗(0.25,0.15) estimates were off by
80% on average, showing that it is almost as bad to neglect the
post-CCSD(T) contribution altogether as to calculate it in such
a small basis set! The aDZ results were better but still far from
converged, deviating by an average 35% from the δT+(Q) bench-
mark. In view of this observation, the earlier CCSDT(Q) bench-
marks of the Hobza group were subsequently refined68 by includ-
ing the δT+(Q)/aDZ estimate. The resulting improved A24 database
remains the only set of benchmark interaction energies for diverse
systems computed at the platinum standard level of theory, and this
database has become a keystone for high-accuracy studies of inter-
molecular interactions including the further refinement of the gold
standard.69

B. Ultra-accurate calculations for four-electron
complexes

Having made recommendations on how to compute platinum-
standard interaction energies for small complexes, we now turn to
several important examples where attaining accuracy beyond the
gold standard is critical for experimental or fundamental reasons.
We first examine the simplest systems which have four electrons
total, namely, the He–He, He–H2, and H2–H2 complexes. In this
case, CCSDTQ is equivalent to FCI and is feasible in at least a
moderate basis set.

The helium dimer poses the most stringent demands for the
accuracy of the pair potential as its second virial coefficients (density,
acoustic, and dielectric) are necessary for the most accurate mea-
surements of the thermodynamic temperature and, consequently,
for the development of an improved temperature (and pressure)
standard.1 These measurements utilize constant-volume, acoustic,
and dielectric-constant gas thermometers filled with helium, and

the nonideality effects of the gas need to be known to extrapolate
to zero pressure (note that these effects are particularly minor for
helium as the virial coefficients are small in the first place). Indeed,
the current best available pair potential for helium,138 the culmi-
nation of a long-term series of ever-improving descriptions of this
interaction,139–145 exhibits millikelvin (nanohartree) accuracy, with
the total interaction energy at the near-minimum separation of 5.6
bohrs amounting to −10.995 57 ± 0.000 20 K. Attaining this accu-
racy has only been possible by going beyond one-electron basis sets
and computing the nonrelativistic potential variationally (that is,
at the FCI level) in a four-electron explicitly correlated Gaussian
basis. Moreover, the relativistic, quantum electrodynamic, and adi-
abatic corrections were carefully determined and included in the
potential.

The accuracy of the best available He–He interaction ener-
gies is truly remarkable, and it cannot at present be matched for
any other weakly interacting system, including the seemingly sim-
ilar four-electron complexes He–H2 and H2–H2. There are three
reasons why the latter systems, especially the hydrogen dimer, are
much more difficult than He–He: the dimensionality of the prob-
lem (the fully flexible He–He, He–H2, and H2–H2 PESs are 1D, 3D,
and 6D, respectively), the number of required centers for basis func-
tions, and the point-group symmetry of the problem (which sim-
plifies the He–He calculations significantly while a general H2–H2
configuration may have no symmetry elements at all). Consequently,
the uncertainties for the best available He–H2 and H2–H2 poten-
tials, while still impressively low, cannot match the He–He poten-
tial uncertainty. Specifically, the interaction energies at the van der
Waals minima amount to −15.870 ± 0.065 K for He–H2

146 and
−56.96 ± 0.16 K for H2–H2.147 The potentials of Refs. 146 and 147
were obtained using large one-electron Gaussian basis sets with all
excitation levels up to FCI taken into account. At the respective
minimum configurations, these higher-level excitations contribute
about −0.57 and −1.8 K [beyond gold standard, FCI−CCSD(T)] or
−0.005 and−0.044 K [beyond platinum standard, FCI−CCSDT(Q)])
for He–H2 and H2–H2, respectively. The two potentials have been
employed in fully quantum calculations of the second virial coeffi-
cient including the effects of monomer flexibility.148,149 While the
flexibility effects are not entirely negligible and the quantum treat-
ment is the only one appropriate below about 50 K, overall, the
second virial coefficients are only moderately sensitive to the inter-
action potential. Some more demanding applications of these PESs
include scattering cross sections,150 bound state properties, and the
pressure broadening and shifting effects on the line shapes of Raman
transitions in H2. The quest for a precise description of the spectral
line shapes has already prompted an extension of the original He–H2
potential146 to a substantially larger range of H–H vibrations, which
has a noticeable effect on the computed pressure broadening and
shifting coefficients.151 In conjunction with the ongoing improve-
ment in the spectral resolution of the experimental H2 transitions,
the “platinum-standard” theoretical PES of Refs. 146 and 151 is
expected to enable a fundamentally new description of spectral line
shapes beyond the commonly used Voigt profile (the convolution of
Lorentzian and Gaussian shapes).2,152

The same He–H2 complex poses a significant and exciting
challenge to ab initio quantum chemistry also in the excited state,
where experimental rate coefficients153,154 for the Penning ioniza-
tion He(23S)+H2 → He + H+

2 + e− are precise enough to pinpoint
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inaccuracies even in the platinum-standard calculation. While the
inclusion of a post-CCSD(T) correction from FCI/aQZ clearly
improved the CCSD(T)/CBS description of rate coefficients, some
discrepancies remain at low collision energies. In Ref. 154, these
discrepancies were resolved by an ad hoc scaling of the correlation
energy by a factor of 1.004; however, a purely ab initio description of
the experimentally observed low-energy resonances has not yet been
achieved.

C. Applications of the CCSDT(Q)-level platinum
standard

We now move on to somewhat larger complexes where a
FCI calculation is not feasible, but the interaction energy accuracy
beyond the gold-standard level can be achieved by including higher-
order coupled-cluster corrections. In many cases, the existing spec-
troscopic data are sufficiently precise to confirm the advantage of a
post-CCSD(T) treatment over the CCSD(T) one or at least to pin-
point the residual inaccuracies in the CCSD(T)/CBS estimates. Our
first example of this kind is the H2–CO complex which has been
thoroughly studied with both theory and experiment. The high-
resolution infrared spectrum of this system is rich in features and
strongly depends on the nuclear spin coupling in the H2 monomer.
While the infrared spectrum of para-H2–CO has been measured
and assigned a long time ago,155 the assignment of the more com-
plex ortho-H2–CO spectrum, also recorded in Ref. 155, provided a
challenge that took more than a decade to overcome. Importantly,
an older H2–CO potential computed at the CCSD(T)/CBS level of
theory156 had insufficient accuracy to explain the congested spec-
trum, so a platinum-standard PES was necessary. In fact, H2–CO
was one of the first complexes for which the importance of post-
CCSD(T) corrections was demonstrated as the CCSDT(Q) calcula-
tions at the two minimum geometries gave substantial (and unequal)
corrections beyond CCSD(T).157 Accordingly, a new PES was con-
structed in Ref. 3 using the CCSD(T)/CBS+δT+(Q)/aDZ level of the-
ory, with an estimated accuracy within 0.5 cm−1 around the van
der Waals minimum. This platinum-standard PES led to an impres-
sive agreement with the experimental high-resolution ortho-H2–CO
spectrum, with the discrepancies in infrared transition energies not
exceeding 0.06 cm−1, so that a complete assignment of the spectral
lines was finally possible. The same PES was also highly successful in
the reproduction of experimental microwave spectra,158 scattering
cross sections,159 and second virial coefficients.160 More recently, a
similar inclusion of the δT+(Q)/aDZ interaction energy term signifi-
cantly improved the He–HCN potential,161 reducing the deviations
of rovibrational energy levels from experimental values162 by a factor
of five.

In some cases, the calculation of a PES at a level of theory higher
than CCSD(T) is not feasible, but high-resolution experimental data
indicate that the accuracy of the CCSD(T)/CBS treatment might
not be sufficient. A prime example is the combined experimental-
theoretical study of low-energy resonances in the H2–NO interac-
tion.163 Two CCSD(T)-level NO–H2 potentials are available,164,165

differing in the details of how the CBS limit has been established.
The experimental integral cross sections at near-resonance colli-
sion energies163 were sufficiently precise to favor the CCSD(T)-
F12a/aTZ+(3s3p2d2f1g1h) potential of Ref. 165 over the conven-
tional CCSD(T) potential extrapolated from the (aTZ,aQZ) bases.164

However, as stated in Ref. 163, this does not mean that the for-
mer CCSD(T)/CBS estimate is more accurate than the latter: quite
likely, the opposite is true. However, the slight deviation of the
Ref. 165 potential from the CBS values of Ref. 164 might be com-
pensating for the lack of interaction energy terms beyond CCSD(T).
Thus, it would be worthwhile to construct a CCSDT(Q)-level H2–
NO PES to resolve the remaining differences. This is, however, a
very formidable task, due in no small part to the open-shell, orbitally
degenerate character of NO and the necessity to compute two PESs
for the two diabatic states of the complex.

A careful reader has noticed by now that all many-electron
examples presented so far involve a molecule with a triple bond
(CO, HCN, NO). This is not a coincidence. Interactions of triply
bonded molecules are notoriously difficult to describe with low lev-
els of electron correlation. A simple (and crude) justification of
this behavior is the importance of π → π∗ excitations for the elec-
tronic structure of the interacting molecule: for a triple bond, a full
description of the π → π∗ states requires a method with quadru-
ple excitations such as CCSDT(Q) or, preferably, full CCSDTQ.
Therefore, complexes involving triply bonded monomers typically
come out as the worst offenders in database-level benchmarks
of coupled-cluster interaction energies: notable examples are the
HF–HCN and H2O–CN− systems among 16 hydrogen-bonded
complexes investigated by Boese166 and the two N2–N2 struc-
tures among the 21 complexes examined in Ref. 137. Interactions
involving triply bonded molecules require extra care at all stages
of the calculation: not only the δT = CCSDT−CCSD(T) and δ(Q)
= CCSDT(Q)−CCSDT differences constitute up to several percent
of interaction energy each but even the δQ = CCSDTQ−CCSDT(Q)
contribution might alter the final result by another percent or so.137

Moreover, the pioneering CCSDT(Q) investigations on the P2–P2
and PCCP–PCCP complexes167 suggest that the importance of
post-CCSD(T) corrections does not diminish as heavier atoms are
present.

The complexes of two triply bonded molecules present quite a
range of different behaviors of the post-CCSD(T) corrections. For
the N2–N2 system, the CCSDT−CCSD(T) and CCSDT(Q)−CCSDT
effects are substantial but cancel each other to a large extent. At the
near van der Waals minimum geometry, the CCSD(T)/CBS interac-
tion energy amounts to −108.2 cm−1, while the δT/aQZ, δ(Q)/aTZ,
and δQ/aDZ corrections are 3.7, −5.3, and 1.3 cm−1, respectively.
This cancellation of higher-order effects appears to hold throughout
the entire N2–N2 PES: a highly accurate, CCSD(T)/CBS+δT+(Q)/aDZ
potential (including also core correlation and relativistic effects) was
constructed by Hellmann168 and it successfully reproduced the best
experimental data for virial coefficients, viscosity, and thermal con-
ductivity of a dilute nitrogen gas. Hellmann observed that his δT+(Q)
correction for different angular configurations was similar in mag-
nitude, but opposite in sign, to the correction for full triples only,
illustrating the (partial but consistent) cancellation. Hellmann also
found that his recovery of experimental second virial coefficient data
was improved when the δT+(Q) contribution was scaled by a factor
of 0.5. This scaling likely implicitly accounts for both the basis set
incompleteness effects of the δT+(Q)/aDZ value and the contribution
from full quadruple excitations.

For a long time, the isoelectronic CO–N2 complex was com-
putationally investigated only at lower levels of accuracy. However,
in 2018, three CCSD(T)/CBS level surfaces for this system were
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published.169–171 The precise theory level for the ab initio grid points
ranged from CCSD(T)-F12b/aQZ169 to CCSD(T)/aQZ+(3s2p1d)170

to CCSD(T)/aQZ+(3s3p2d1f1g).171 These small differences in the
CCSD(T)/CBS estimates resulted in differences of below 0.01 bohr
for the minimum intermolecular separation, up to 7○ in the angles
of CO and N2 with respect to the center-of-mass axis and up
to 0.8 cm−1 (out of about 118 cm−1) in the minimum interac-
tion energies. The potential of Ref. 171, a tiny bit deeper than the
other two, was observed to provide the best agreement with the
experimental rovibrational level data, suggesting that a properly
selected “gold-standard” estimate might be adequate for CO–N2.
However, our calculations at the van der Waals minimum geome-
try indicate that δT/aQZ, δ(Q)/aTZ, and δQ/cc-pVDZ contribute 2.2,
−3.9, and 0.6 cm−1, respectively, to the interaction energy. Thus,
CCSD(T) calculations require some error cancellation between
basis set incompleteness effects and the higher-order terms to pro-
duce a spectroscopically accurate representation of the CO–N2
surface.

The CO–CO complex happens to be especially difficult for low-
level electronic structure methods. It was observed already in 1999
that CCSD(T) is not accurate for this system as it misses impor-
tant fifth-order interaction terms.172 Nevertheless, the CCSD(T)-
level potential developed by Dawes et al.173 was successful at accu-
rately reproducing experimental rovibrational levels173 as well as
rotationally inelastic cross sections.174 However, the success of this
potential is a consequence of picking a specific, reasonably accu-
rate but not converged, CCSD(T)/CBS estimate so that the basis
set incompleteness errors partially cancel the post-CCSD(T) effects.
Dawes et al. chose the all-electron CCSD(T)-F12b approach without
the counterpoise correction extrapolated from the cc-pCVXZ-F12
≡ CVXZ-F12175 basis set family with X = D,T,Q. The different CO–
CO minima are connected by a pathway with very minimal barriers
so that even the lowest rovibrational states of this complex extend
over all of them. Thus, the precise landscape of the minimum-
energy pathway, in particular, the difference between the mini-
mum depths, has a large influence on the computed spectroscopic
data.

The dependence of the CO–CO interaction energy along
the minimum-energy pathway on the theory level is presented
in Fig. 2 [the calculations in this figure used a slightly differ-
ent C–O bond length (2.137 bohrs) than Ref. 173 (2.132 bohrs)].
In addition to the CCSD(T)-F12b/CVXZ-F12 levels employed in
Ref. 173, X = D, T, Q, we present our best estimate of the all-
electron CCSD(T)/CBS limit, computed by combining the frozen-
core CCSD(T∗∗)-F12b/(aQZ,a5Z) value with the CCSD(T)/aug-cc-
pCV5Z correction for the core-core and core-valence correlation.
Note that the standard X−3 extrapolation used above, while not
exactly optimal for explicitly correlated calculations,176 is certainly
better than no extrapolation at all (and it was employed for some
variants of the PES in Ref. 173). Furthermore, we add the correc-
tions for full triples (from CCSDT/aQZ) and perturbative quadru-
ples [from CCSDT(Q)/aTZ]. The large discrepancies between differ-
ent theory and basis set levels in Fig. 2 indicate the inherent difficulty
of this complex: the lowest level shown, CCSD(T)-F12b/CVDZ-F12,
predicts a saddle point in the global minimum location! One can
see that the post-CCSD(T) effects are large and drastically alter the
landscape of the minimum-energy pathway. While the δ(Q) term
is fairly constant, deepening the surface by 2.1–3.4 cm−1, the δT

FIG. 2. CO–CO interaction energies along the pathway passing through the
global and local minima of the complex, computed at various levels of the-
ory. The angle Θ is the angle of one of the CO molecules with respect to the
line joining the centers of masses; all other intermolecular degrees of freedom
are optimized [at the counterpoise-corrected CCSD(T)-F12b/aTZ level] for each
Θ to stay on the minimum energy pathway. All results have been computed
in the present work. The results marked in black are similar (but not identi-
cal) to the data points of the best-performing PES of Ref. 173—our calcula-
tions use a slightly different C–O bond length and a different CBS extrapolation
scheme.

contribution is quite erratic, ranging all the way from −1.9 to
6.4 cm−1. Thus, the two leading post-CCSD(T) effects can both
amplify each other (like in the global minimum) or partially can-
cel out (like in the local minima). This behavior is illustrated in
Fig. 3 which presents the differences between lower levels of theory
and our benchmark CCSDT(Q)-level interaction energies. The (very
computationally demanding) full CCSDTQ/aDZ calculations were
performed for two high-symmetry minima, and even the δQ correc-
tion turned out to be nonnegligible, amounting to −0.7 cm−1 for the
global minimum and 0.6 cm−1 for the local one [thus, even the plat-
inum standard CCSDT(Q)/CBS approach underestimates the dif-
ference between the two minima by more than 1 cm−1]. Figure 3
shows that the CCSD(T)/CBS gold standard description of the
CO–CO potential valley, enhanced only by the core correlation, is
highly inaccurate. However, the level of theory selected in Ref. 173
is consistently close to our CCSDT(Q)-level results thanks to an
error cancellation between the basis set incompleteness effects at
the CCSD(T) level and the contribution from higher-order coupled-
cluster excitations. Thus, the potential of Ref. 173 owes its very
good performance to a clever selection of a CCSD(T)/CBS estimate
that facilitates this error cancellation. The large discrepancies shown
in Figs. 2 and 3 are clearly not typical and result from a partic-
ularly unfortunate combination of a large magnitude of the post-
CCSD(T) terms and their variations in sign. We present this worst-
case scenario to serve as a cautionary tale against automatically
neglecting the interaction energy contributions beyond the gold
standard.
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FIG. 3. Differences between lower levels of theory and our best platinum-standard
CCSDT(Q)-level estimate (the red diamonds in Fig. 2) for the CO–CO minimum
interaction energy pathway depicted in Fig. 2.

V. THE SILVER STANDARD—WHEN CCSD(T)/ATZ
IS NOT AN OPTION
A. Approximations to the gold standard

We have postulated in Sec. III that the gold-standard pre-
cision in the determination of the CCSD(T)/CBS limit requires,
one way or another, a CCSD(T) calculation in a basis set of
triple-zeta quality and size. When such a calculation is avail-
able, a suitable CCSD(T)/CBS estimate can be generated in several
ways including the explicitly correlated approach [for example,
CCSD(T∗∗)-F12b/aTZ], the composite treatment {for example,
MP2/(aQZ,a5Z)+δ[CCSD(T)]/aTZ}, or a combination of both. It
should be noted, however, that a CBS extrapolation involving a
double- and triple-zeta basis set {for example, CCSD(T)/(aDZ,aTZ)
or MP2/(aQZ,a5Z)+δ[CCSD(T)]/(aDZ,aTZ)} is typically inferior to
plain aTZ as the information from the small aDZ basis set does more
harm than good.84

Unfortunately, for a large class of medium-sized systems,
CCSD(T)/aDZ is feasible but CCSD(T)/aTZ is not. In such a case,
the precision attained by a CBS limit estimate involving only aDZ-
level CCSD(T) [or CCSD(T)-F12] calculations might not be up to
the gold-standard requirements. Nevertheless, it is highly useful to
establish a level of theory and basis set that can be termed “sil-
ver standard,” that is, it is feasible when CCSD(T)/aDZ is feasible,
reasonably accurate, and free from particularly bad outliers as long
as the underlying complexes are entirely single reference. A silver-
standard benchmark calculation is accurate enough for many prac-
tical purposes, including the refinement of more approximate meth-
ods based on DFT, semiempirical approaches, or machine learning.
Therefore, there is a large market for accurate silver-standard bench-
mark interaction energies and it is worthwhile to examine the best
options to utilize CCSD(T)/aDZ-level results in the determination
of benchmark values.

The selection of approximate electronic structure methods
that do the best job at recovering gold-standard interaction energy
benchmarks was thoroughly studied by Burns et al.35 In this work,
which should be credited for coining the terms “silver standard”
and “bronze standard,” the benchmark level of theory was chosen
as MP2/(aTZ,aQZ)+δ[CCSD(T)]/aTZ. Relative to this realization of
the gold standard, 394 different combinations of theory level and
basis set were tested on a dataset of 345 weak interaction ener-
gies. Among the methods that require some aDZ-level CCSD(T)
calculation, the best performer (the “silver standard”) was found to
be the DW-CCSD(T∗∗)-F12/aDZ dispersion-weighted approach.53

The silver-standard interaction energies deviated by an average
of 0.05 kcal/mol from the gold-standard values, indicating a very
acceptable and consistent accuracy. Burns et al.35 went on to propose
also a “bronze standard” MP2C-F12/aDZ model chemistry, based on
the “coupled MP2” (MP2C) approach of Hesselmann,177 that leads
to an average error of 0.16 kcal/mol and is significantly cheaper than
even a double-zeta CCSD(T) calculation. One should note, however,
that the 0.16 kcal/mol accuracy is only marginally better than the one
afforded (on similar weakly interacting systems) by the most modern
variants of density functional theory.37 Therefore, the bronze stan-
dard may not be accurate enough for an important class of applica-
tions, the benchmarking and refinement of DFT-based approaches
to weak interactions, and we will focus exclusively on the silver
standard from now on.

B. Double-zeta CCSD(T) interaction energies
As we have already stated in Sec. II, a “double zeta-level

CCSD(T) interaction energy” might mean many different things.
Therefore, a thorough assessment of the performance of different
possible variants is worthwhile. A careful study of the influence of
the F12 variant and basis set on the quality of the CCSD(T)-F12
interaction energies was published by Sirianni et al.69 The authors
examined in detail the A2467 and S2230 noncovalent databases and
compared the performance of different CCSD(T)-F12 approxima-
tions as well as of the aXZ and cc-pVXZ-F12 basis set families.
Probably the most interesting finding of Ref. 69 was the clearly infe-
rior performance of the cc-pVXZ-F12 sequence compared to the
standard aXZ one (the same phenomenon was observed earlier for
a much smaller class of systems127,128). The underperformance of
CCSD(T)-F12/cc-pVXZ-F12 interaction energies might be some-
what surprising—contrary to what the basis set name suggests, for
atoms other than H and He, the cc-pVXZ-F12 set has more func-
tions than the aXZ one at the same X. It has been argued69 that the
high-angular-momentum exponents of the cc-pVXZ-F12 sets, opti-
mized for molecular correlation energies, are not diffuse enough for
noncovalent interaction energy computations. Our criticism of the
cc-pVXZ-F12 basis sets in the context of interaction energy calcula-
tions is not meant to discredit a series of recent benchmark interac-
tion energy reevaluations54,89–91 for the S66x8,31 WATER27,88 and
X40x10178 databases using a combination of MP2-F12/CBS and
the CCSD−MP2 and CCSD(T)−CCSD corrections calculated using
either the F12 approach with cc-pVXZ-F12 basis sets or the conven-
tional approach with heavy-augmented cc-pVXZ bases. The bench-
mark interaction energies computed in this way are clearly superior
to the original estimates due to the sheer power of the F12 approach
and a careful selection of the CCSD-F12 variant, the (T) estimate,
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and the treatment of the counterpoise correction. However, it
is quite likely that similarly accurate (or better) CCSD(T)/CBS
estimates could have been obtained at a reduced computational
cost should the authors of Refs. 54 and 89–91 have chosen
the standard aXZ basis set family instead of the cc-pVXZ-F12
one.

As far as the aXZ basis sets are concerned, Sirianni et al.69

found that the CCSD(T∗∗)-F12b and CCSD(F12∗)(T∗∗) variants
exhibited very similar (and impressive) performance on both the
A24 and S22 databases. The performance of CCSD(T∗∗)-F12a is
more erratic—it happens to be the best aDZ-level variant for A24
but the worst one for S22. For the latter dataset, the highest aDZ-
level accuracy was attained by the DW-CCSD(T∗∗)-F12 combi-
nation.53 As DW-CCSD(T∗∗)-F12/aDZ performed also respectably
well on the A24 dataset, its designation as the silver standard35

was confirmed in Ref. 69. Overall, the combination of the F12
approach, aXZ basis sets, and the counterpoise correction emerged
as the best strategy to converge to the CBS limit, especially at
the silver-standard level requiring only double-zeta coupled-cluster
calculations.

C. The role of midbond functions
The authors of Ref. 69 did not consider one more technique

that has proven successful in accurately recovering weak interac-
tion energies—the addition of midbond functions. Such functions
increase the basis set size only slightly as one additional basis func-
tion center is added to all the atomic centers in the complex (one
may note in passing that the placement of more than one mid-
bond center, or even the determination whether more than one
center is needed, has not been investigated so far, but some ini-
tial tests have been carried out for a “cloud” of off-center Gaus-
sians surrounding the complex179,180). As a result, for molecules of
the size targeted by the silver standard, an aDZ+(bond) calcula-
tion is significantly cheaper than an aTZ one. The use of midbond
functions has initially been popularized by Tao,181,182 who designed
standard midbond sets such as (3s3p2d) and established, through
tests on very simple complexes, that neither the precise location
of the midbond center nor the precise midbond exponents have
a significant influence on the accuracy of the resulting interaction
energies. Thus, present-day calculations involving midbond func-
tions typically use either one of the standard midbond sets (inde-
pendent of the atom-centered basis set) or a hydrogenic aXZ basis
with the cardinal number X that varies together with the cardi-
nal number of the atom-centered set. The latter choice somewhat
simplifies calculations that require density-fitting and/or resolution-
of-identity basis sets [such as MP2-F12 and CCSD(T)-F12] as the
required auxiliary bases are readily available for aXZ. In contrast,
for standard midbond sets, only one auxiliary basis has been con-
structed and tested.183 While the use of bond functions requires
a dimer basis set in all calculations (in other words, the counter-
poise correction must be included), there is nothing wrong with
combining midbond functions with CBS extrapolation184 and/or the
F12 approach.127 Thus, it is worthwhile to check if the inclusion of
bond functions in aDZ-level CCSD(T) and/or CCSD(T)-F12 calcu-
lations can lead to an improved silver standard of interaction energy.
A recent study from our group70 has shown that the answer is
yes.

In order to build directly on the findings of Ref. 69, Ref. 70
examined the same A2467 and S2230 databases. The performance
of CCSD(T), CCSD(T)-F12a, and CCSD(T)-F12b (with or with-
out the scaling of triples) has been compared between midbond-
less aXZ bases and the same atom-centered aXZ sets augmented
by a constant [(3s3p2d) and (3s3p2d2f )] or variable (hydrogenic
aXZ) set of functions centered on the intermolecular bond. The
one-step CCSD(T) approaches were compared to the composite
MP2/CBS+δ[CCSD(T)] ones, and the partially augmented basis
sets (from the “calendar” family: jul-cc-pVXZ, jun-cc-pVXZ, . . .42)
were investigated together with the fully augmented aXZ ones.
As far as the F12 variant is concerned, an interesting observa-
tion was made that confirmed earlier findings for a more lim-
ited class of systems:80,185 the CCSD-F12a variant, which is more
approximate (contains fewer diagrams) than CCSD-F12b,49,50 per-
forms best when combined with unscaled triples (which can be
viewed as more approximate than scaled triples—even if the scal-
ing is imperfect, it is almost certainly better than no scaling at
all). An exception to this observation are the data in the smallest
aDZ basis when CCSD(T∗∗)-F12a accidentally happens to be the
best one. The CCSD-F12b variant, in turn, performs best when a
scaled (T∗∗) contribution is added to it. This suggests that while
the CCSD(T∗∗)-F12b [or CCSD(F12∗)(T∗∗)] combination provides
“the right answer for the right reason,” the CCSD(T)-F12a approach
benefits from an (accidental but quite systematic) error cancellation
between the CCSD part and the triples part. By comparing against
separate CCSD/CBS and (T)/CBS benchmarks for the A24 database,
the authors of Ref. 70 showed that this is indeed the case, espe-
cially for larger basis sets and when the milder, CCSD-based scal-
ing54 is used for the triples contribution instead of the MP2-based
one.

The addition of midbond functions improved the accuracy of
all variants considered in Ref. 70 except for CCSD(T∗∗)-F12a. In the
case of conventional CCSD(T) and of CCSD(T)-F12b with unscaled
and CCSD-scaled triples, the improvement increased systematically
as the midbond basis set was enlarged, while for CCSD(T)-F12a
and CCSD(T∗∗)-F12b, the ordering of results with different mid-
bonds was more erratic. It was observed that the combination of
midbond functions and CCSD(T)-F12b with CCSD-scaled triples
was the least reliant on error cancellation between the CCSD part
and the triples part and thus likely to provide the most consis-
tent performance for systems outside of the investigated databases.
Moreover, the combination of midbond functions and the compos-
ite MP2/CBS+δ[CCSD(T)] treatment is still capable of providing
accurate results when some or all diffuse functions are removed
from the atom-centered part of the basis set. In fact, the cheapest
variant that delivered an average accuracy within 0.1 kcal/mol for
both databases was MP2/CBS+δ[CCSD(T)]/cc-pVDZ+(3s3p2d2f ),
where the only diffuse functions present were those centered on
the midbond. The switch from δ[CCSD(T)] to a suitably chosen
variant of δ[CCSD(T)-F12] decreased the errors further, and consid-
ering both the accuracy and the computational cost, the authors of
Ref. 70 went ahead to propose three new silver standards. The afore-
mentioned MP2/CBS+δ[CCSD(T)]/cc-pVDZ+(3s3p2d2f ) level was
designated the “silver-minus” one as it is significantly cheaper
than the established DW-CCSD(T∗∗)-F12/aDZ silver standard35

but only slightly less accurate. The newly designated “silver” level,
MP2/CBS+δ[CCSD(T)-F12a]/jun-cc-pVDZ+(3s3p2d2f ), is both a
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FIG. 4. The accuracy (MUE values on
the A24 and S22 databases) and com-
putational efficiency (relative timings for
the parallel-displaced benzene dimer) of
different CCSD(T)/CBS approximations
that require only double-zeta coupled-
cluster calculations. The original silver
standard of Ref. 35 and the new “silver-
minus,” “silver,” and “silver-plus” stan-
dards introduced in Ref. 70 are included.
(3322) is a shorthand notation for the
(3s3p2d2f ) set of midbond functions.
Reprinted with permission from Dutta
and Patkowski, J. Chem. Theory Com-
put. 14, 3053–3070 (2018). Copyright
2018 American Chemical Society.

little more accurate and a little more efficient than the silver standard
of Ref. 35. Finally, the “silver-plus” level, CCSD(Tbb)-F12b/aDZ +
(3s3p2d2f ), where (Tbb) denotes the CCSD-F12b-based scaling of
triples,54 is somewhat more expensive than the original silver stan-
dard but provides much higher accuracy. The performance of differ-
ent silver-standard variants considered in Ref. 70 is summarized in
Fig. 4.

In Ref. 70, substantial improvement to the double-zeta-level
CCSD(T)/CBS estimates was achieved with standard, off-the-shelf
sets of midbond functions. It remains to be seen whether additional
gains in the accuracy can be attained by optimizing the exponents
of midbond functions and/or their precise placement in the interac-
tion region. As the original work of Tao182 suggested this is not the
case, little effort has been made in the literature to design improved
midbond sets. However, a recent work by Shaw and Hill186 has
challenged this paradigm. These authors optimized compact sets of
bond functions at the MP2 and CCSD(T) levels for several noble gas
dimers, alkali metal dimers, and small molecular complexes investi-
gated in Ref. 128. Shaw and Hill concluded that while the commonly
used intermolecular midpoints were close to the optimal location
for the midbond center, the dependence of the interaction energy
on the midbond exponents was quite considerable, and the opti-
mization made their compact midbond sets highly competitive with
larger unoptimized sets (on the negative side, the optimized expo-
nents did not appear to be transferable between different systems).
The findings of Ref. 186 suggest that there is still room for improve-
ment of the silver standard by choosing carefully optimized mid-
bond sets instead of the unoptimized ones. We expect this direc-
tion of research to be pursued in the near future, together with
an extension of the silver-standard performance studies to larger
and more diverse databases including off-minimum intermolecular
separations.

VI. CONCLUDING REMARKS
We have presented the current state of the art in the calcula-

tions of accurate interaction energies in small- and medium-sized

complexes. This state of the art is quite impressive—there exists an
established gold standard that is typically accurate to several hun-
dredths of a kcal/mol and capable of producing PESs that reproduce
experimental observables for all but the highest-resolution spectro-
scopic and scattering measurements. Moreover, this gold standard
can be either further improved if even higher accuracy is required or
relaxed to provide interaction energies of near-gold-standard accu-
racy at a significantly reduced computational cost. Thus, the gold
standard, realized in practice by MP2/(aTZ,aQZ)+δ[CCSD(T)]/aTZ
or a similar calculation, is supported by the higher-accuracy plat-
inum standard, composed of an accurate frozen-core CCSD(T)/CBS
estimate plus corrections for higher-level coupled-cluster excita-
tions through CCSDT(Q), the correlation of core electrons, and
relativistic effects. On the other side, the gold standard is accom-
panied by the silver one, with average interaction energy errors
still well below 0.1 kcal/mol attained using only a double-zeta
CCSD(T) calculation. The accuracy of CCSD(T)/aDZ is strongly
improved by the explicitly correlated CCSD(T)-F12 approach, the
composite MP2/CBS+δ[CCSD(T)] treatment, the addition of mid-
bond functions, or, preferably, by a combination of at least two
of these enhancements.69,70 Thus, at this point, we have a very
clear understanding of how to attain a given level of accuracy for
a small closed-shell complex, and given the recent advances in
the automatic generation of the entire PES,14,15 the development
of new gold-standard-level potentials for complexes of experimen-
tal interest is now close to routine. Moreover, with significant
computational effort required to compute CCSDT(Q) interaction
energies, one can produce an even more accurate platinum-
standard PES that is capable of resolving the intricacies of compli-
cated spectra and locating resonances in elastic and inelastic cross
sections.

Impressive progress has also been made in the construction of
gold- and silver-standard benchmark noncovalent databases, both in
terms of the accuracy of the individual data points and the breadth
and diversity of the entire dataset. As a result, the newest compos-
ite databases involve at least 103 CCSD(T) interaction energies: in
one case,83 the number of data points is over 105! This increase in
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the amount of available high-accuracy data is particularly helpful
for developing machine-learning approaches which are notoriously
data-intensive. Interestingly, while nearly all gold-standard PESs for
individual complexes have been obtained in bases with midbond
functions (cf. Sec. III), very few numbers included in noncovalent
databases have been computed with midbonds. There is no good
algorithmic reason for this: it is likely that the awareness of the ben-
efits of midbonds in the benchmarking community is lower than
in the PES community. One relatively unexplored issue of adding
midbond functions is the dependence of the accuracy improvement
on the size of the complex: it is quite intuitive that the addition
of a single midbond center will provide more benefit for an atom-
atom complex, where the midbond constitutes 1/3 of the basis func-
tion centers, than, say, for a coronene dimer where the midbond
is just 1 out of 73 centers. For a stacked structure of the latter sys-
tem, it is likely that more than one midbond center is required for
a good coverage of the large contact area between the molecules.
However, the best practices of placing multiple midbond centers, or
even deciding whether more than one center is needed, are yet to be
explored.

Contrary to the situation for closed-shell systems, the exist-
ing benchmark data for open-shell noncovalent complexes are quite
scarce. A few small datasets for interactions involving radicals have
been constructed using high-level calculations,187–189 but each set is
composed of fairly similar systems and none of them contain off-
minimum configurations. Thus, substantial progress is required to
assess the accuracy of approximate approaches for open-shell inter-
actions on an equal footing with the closed-shell ones, and we expect
new extended open-shell databases to appear in the near future.
Another direction of current and future progress is the extension of
benchmark datasets beyond just interaction energies. Indeed, there
already exist pilot benchmark studies of noncovalent geometries,72,73

and a recent database of CCSD(T)-level dipole moments190 includes
some noncovalent complexes in addition to single molecules. How-
ever, more variety in the benchmark data for each of these kinds
would be desirable as would a benchmark dataset of harmonic vibra-
tional frequencies in some noncovalent complexes. Actually, there
is some evidence that these frequencies are even more sensitive to
the theory level than interaction energies: some MP2 normal modes
for water clusters are very far off the benchmark CCSD(T) val-
ues.191 Finally, several current applications including the construc-
tion of first-principles-based force fields192,193 and physics-based
machine learning of noncovalent interaction energies194 strongly
benefit from an accurate physical energy decomposition, that is,
a partitioning of the overall interaction energy into well-defined
terms of different physical origins. Such a partitioning can be pro-
vided by SAPT,16 and in recent years, the accuracy of different-level
SAPT decompositions has been thoroughly tested,195 including the
generation of a small set of benchmark SAPT data for the highest-
accuracy, coupled-cluster treatment of intramolecular electron
correlation.196

Perhaps the most pressing issue in the accurate calculations
of noncovalent interaction energies is an extension of the bench-
mark methodology to larger systems. This specific issue has been the
subject of a recent perspective by Al-Hamdani and Tkatchenko;197

here, we will just mention a few obstacles that lie ahead. There cur-
rently exist two small benchmark datasets of large intermolecular
complexes: L7198 and S12L.199,200 The reference energies for the S12L

set were obtained by (approximately) back-correcting experimen-
tal association free energies for effects such as harmonic zero-point
energy, entropy, and solvent influence. The L7 reference interaction
energies were computed ab initio, using MP2/CBS plus a correction
for higher-level correlation obtained from the quadratic configu-
ration interaction method with singles, doubles, and perturbative
triples [QCISD(T)] in a very small 6-31G∗(0.25) basis set. Thus,
both reference data are not fully up to even the silver standard dis-
cussed in Sec. V. Several other high-level calculations have been
performed for partial or whole L7 and S12L datasets,21,201,202 includ-
ing domain-based local pair natural orbital CCSD(T) [DLPNO-
CCSD(T)]203 and diffusion Monte Carlo (DMC).204 However, those
high-level results differ from the original reference energies and
from each other by several kcal/mol,197 indicating that the accu-
racy with which the L7 and S12L interaction energies are known
is significantly inferior to the precious metals standards discussed
in this perspective. The challenges facing such accurate calculations
are not limited to the computational cost: one has to also minimize
the residual errors of the local CCSD(T) approximation (or, alter-
natively, the fixed-node errors in DMC), and for some important
classes of complexes (for example, those involving large polycyclic
aromatic hydrocarbons), even full CCSD(T) might be inaccurate due
to the emerging multireference character. Thus, the accurate ab ini-
tio treatment of larger complexes still leaves a lot to be desired, and
we expect continuous improvement of large benchmarks in the near
future.
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172M. Rode, J. Sadlej, R. Moszyński, P. E. S. Wormer, and A. van der Avoird,
Chem. Phys. Lett. 314, 326 (1999).
173R. Dawes, X.-G. Wang, and T. Carrington, Jr., J. Phys. Chem. A 117, 7612
(2013).
174S. A. Ndengué, R. Dawes, and F. Gatti, J. Phys. Chem. A 119, 7712 (2015).
175J. G. Hill, S. Mazumder, and K. A. Peterson, J. Chem. Phys. 132, 054108 (2010).
176J. G. Hill, K. A. Peterson, G. Knizia, and H.-J. Werner, J. Chem. Phys. 131,
194105 (2009).
177A. Hesselmann, J. Chem. Phys. 128, 144112 (2008).
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