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Fourier transform infrared reflectance (FTIR) spectroscopy has been used to predict properties of forest logging residue, a
very heterogeneous feedstock material. Properties studied included the chemical composition, thermal reactivity, and energy
content. The ability to rapidly determine these properties is vital in the optimization of conversion technologies for the successful
commercialization of biobased products. Partial least squares regression of first derivative treated FTIR spectra had good
correlations with the conventionally measured properties. For the chemical composition, constructedmodels generally did a better
job of predicting the extractives and lignin content than the carbohydrates. In predicting the thermochemical properties, models
for volatilematter and fixed carbon performed very well (i.e.,𝑅2 > 0.80, RPD> 2.0).The effect of reducing the wavenumber range to
the fingerprint region for PLSmodeling and the relationship between the chemical composition and higher heating value of logging
residue were also explored. This study is new and different in that it is the first to use FTIR spectroscopy to quantitatively analyze
forest logging residue, an abundant resource that can be used as a feedstock in the emerging low carbon economy. Furthermore, it
provides a complete and systematic characterization of this heterogeneous raw material.

1. Introduction

Lignocellulosic biomass is the only renewable resource that
can be used in the production of biofuels and platform chem-
icals in addition to bioenergy. As the most abundant carbon
neutral resource, using biomass instead of fossil fuels can help
mitigate environmental pollution. However, many physical,
chemical, and structural factors can hinder the conversion of
biomass into fuels and chemicals. A better understanding of
the properties of biomass will be important in the allocation
of feedstock to the appropriate end use. An ability to deter-
mine these properties in a timely manner is also necessary in
the optimization of conversion technologies for the successful
commercialization of biomass-based products. There is thus

a need for high throughput methods and equipment in the
monitoring and characterization of the raw feedstock as
conventional methods have been laborious and destructive.

Fourier transform infrared reflectance (FTIR) spec-
troscopy has been used as a powerful analytical tool for the
rapid characterization of lignocellulosic biomass. Since FTIR
spectroscopy determines the presence of fundamentalmolec-
ular vibrations that are characteristic of a chemical compound
or class of compounds, it has widely been used in the
qualitative elucidation of changes in biomass structure during
and/or after treatment with processes. For instance, FTIR
spectroscopy was used to study trembling aspen extracted
with supercritical methanol [1] and also tomonitor the physi-
cal and chemical changes that result as corn stover undergoes
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ammonia fiber expansion (AFEX) and iconic liquid (IL)
pretreatments [2].With the advancement ofmultivariate data
analysis, researchers are now coupling FTIR spectroscopy
with chemometric methods for rapid quantitative analysis
of biomass feedstock. FTIR-based partial least squares (PLS)
models were constructed to quantify the monomeric sug-
ars, acetic acid, and 5-hydroxymethyl-2-furfural (HMF) of
dilute acid pretreated biomass [3]. The tool has also been
used to model the ash, volatile matter, fixed carbon, and
higher heating value (HHV) of sweetgum, loblolly pine,
and switchgrass torrefied at different temperatures [4]. For
some studies on the raw biomass, FTIR spectroscopy was
employed in characterizing several agricultural residues and
their extractives content [5], in the qualitative analysis of
lignin from five timber species [6], and in predicting the
chemical composition of hardwoods [7]. FTIR-based models
have also been employed for discriminant and classification
analysis of biomass feedstocks and plant materials [8–12].

Most of the studies using FTIR spectroscopy were con-
ducted on biomass that has been subjected to some kind of
pretreatment; surprisingly, not very much was found on the
raw resource.

In the USA, about 1.3 million dry tons of biomass can be
sourced annually from forestry (27%) and agricultural (77%)
operations, capable of replacing a third of the country’s cur-
rent fuel consumption [13]. Forest biomass includes logging
residues, precommercial thinnings, fuel treatments, residues
from primary and secondary mill processing, and urban
wood wastes. According to Smith et al. (2009) [14], some 68
million dry tons of logging residues are currently produced in
the USA, most of which is left onsite. Using logging residue
as a raw material will ensure more complete and sustainable
utilization of trees. In addition, several studies have shown
that the sustainable removal of logging residues can improve
forest health, enhance replanting efforts and regeneration,
and control forest fires [15–17].

Qualitative and quantitative analysis of biomass with
FTIR spectroscopy can be quite precise when materials vary
considerably in chemical structure. For example, woody
tissue could be easily differentiated from bark resulting in an
easy calculation of bark content in aspen and birch [18] and
beech could be differentiated from pine due to considerable
differences in syringyl and guaiacyl moieties [19]. Such dif-
ferentiation was less discriminative for the same tree species
with tissue obtained from the juvenile andmature wood [20].
However when perturbations such as temperature [4] and
chemical treatments [21] are introduced then model robust-
ness for identification and/or concentration determination
becomes more superior. The objective of this study was to
employ FTIR spectroscopy coupled with partial least squares
(PLS) regression to rapidly predict the chemical composition,
thermal reactivity, and energy content of logging residue of
loblolly pine, the most economically important tree species
in the USA. This study attempts to take advantage of the
wide differences in bark, needle, and woody tissue chemistry
that should allow for easy discrimination and quantification.
The accurate estimation of, for instance, the concentration of
carbohydrates is important since it is directly proportional
to the yield of biofuels and having prior knowledge of the

inorganic fraction will enable the anticipation of slagging or
the extent to which the calorific value may be impacted.

2. Materials and Methods

2.1. Materials. Lignocellulosic biomass acquired during har-
vesting operations on several loblolly pine plantations in
southern Alabama, USA, was used for this study. Material
comprised whole tree, wood and bark, slash (i.e., limbs
and foliage), and clean wood chips. Ten biomass sets were
sampled for each of the four biomass types.

2.2. Methods
2.2.1. Conventional Laboratory Methods. Conventional stan-
dard methods were used to determine the chemical makeup,
thermal reactivity, and energy content of biomass.

The chemical composition of biomass samples was deter-
mined via wet chemistry. Extractive content was determined
as specified in NREL/TP-510-42619 and TAPPI T- 204. 5 g of
a test sample ground to pass a 40-mesh screen was extracted
in 150mL of acetone for 6 hours in a Soxhlet Apparatus.
Afterwards, the acetone was allowed to evaporate before
drying the extract in a vacuum oven at 40∘C for 24 hours.
Air-dried extractive-free samples were used to determine
lignin and carbohydrates followingNREL/TP-510-42618. Test
samples were first hydrolyzed with 72% sulfuric acid. This
primary hydrolysis was carried out at 30∘C ± 3∘C for an
hour. Then, the concentration of acid was diluted to 4%
with deionized water and a secondary hydrolysis carried
out in an autoclave at 121∘C for another hour. Hydrolyzed
samples were allowed to cool before filtering through tared
glass crucibles. An aliquot of this filtrate was collected to
be used for determining the acid-soluble lignin (ASL) and
monomeric sugars. The solid residue was thoroughly washed
with distilled water and oven dried at 105∘C overnight and
the final weight used for calculating the acid-insoluble lignin
(AIL) content of biomass. The ASL was determined with
a UV/vis spectrophotometer immediately after hydrolysis.
Total lignin was calculated as the sum of ASL and AIL.
The monomeric sugars (i.e., arabinose, glucose, galactose,
mannose, and xylose) in test samples were measured using a
Bio-Rad Aminex HPX-87P column equipped HPLC. Holo-
cellulose content was calculated as the sum of monomeric
sugars; the cellulose content was computed as glucose −
((1/3) ∗ mannose) and the difference between holocellulose
and cellulose designated as hemicelluloses.

Bomb calorimetry, as specified in ASTM D5865, was
used in calorific value determination, whereas proximate
analysis was conducted following NREL/TP-510-42622 (for
ash content) and CEN/TS 15148 (for volatile matter content).

Analysis of Variance (ANOVA) followed by Tukey pair-
wise comparison tests between the four biomass types (𝛼 =
0.05) was performed using the R Stats Package. Duplicate
experiments were run for each test sample.

2.2.2. Collection of Spectra. Mid infrared spectra were col-
lected over a wavenumber range of 4000 cm−1 to 650 cm−1
using a PerkinElmer Spectrum 400 FT-IR/FT-NIR spec-
trometer equipped with a diamond crystal attenuated total
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Figure 1: FTIR spectra of the different types of forest biomass. (a) Fingerprint region; (b) full MIR range.

reflectance device (i.e., ATR-FTIR) and a torque knob to
ensure that consistent pressure is applied to samples dur-
ing spectra collection. Prior to spectra acquisition, samples
were ground to pass an 80-mesh screen to improve model
properties through light scatter reduction and oven dried
at 40∘C for 4 hours. Each test sample was placed on the
diamondplate, a pressure of 70±2 psi applied using the torque
knob, and then scanned thirty-two times at a resolution of
4 cm−1. The average of the thirty-two spectra was corrected
for background absorbance by subtracting the spectrum of
the empty ATR crystal and used for analysis.

2.2.3. Partial Least Squares (PLS) Regression. PLS regression
is a statistical technique for developing predictive models
of multivariate data that otherwise have high collinearity.
The iterative NIPALS algorithm used extracted successive
linear combinations of the predictors (called factors or latent
vectors) such that variations in both predictors (i.e., MIR
spectra) and responses (i.e., property under study) were
optimally accounted for. A more detailed description of the
procedure can be found elsewhere [22].

PLSmodelswere developedwith PerkinElmer’s Spectrum
Quant+ software using spectra of the full mid infrared region
(i.e., 4000–650 cm−1) as well as the fingerprint region (1800–
650 cm−1). Spectra were pretreated with derivatives (1st order
5-point) for baseline correction and also to help reduce
nonlinearity and multicollinearity among variables. Second
derivatives were not used due to the generally lower signal
to noise ratio. Both predictors and responses were mean
centered prior tomodeling. Due to the relatively small sample
size (𝑛 = 40), the leave-one-out cross validation modeling
method was employed. In this technique, for each run, 39 out
of the 40 samples are used as training dataset for calibrating a
model that is used to predict the 1-sample test dataset. This is
iterated forty times until all samples are used as independent
single-element test datasets.

Developed models were evaluated using such statistics
as the standard error of calibration (SEC), standard error of
cross validation (SECV), coefficient of determination (𝑅2),
and ratio of performance to deviation (RPD).

3. Results and Discussion

3.1. FTIR Spectra. MIR spectra characteristics of the four
biomass sets understudied are presented in Figure 1. Even
though this region encompasses the 4000 to 650 cm−1
wavenumber range, the fingerprint region (1800 to 650 cm−1)
is usually of particular interest because it contains the most
spectral information pertaining to the molecular/chemical
composition of a material (Figure 1(a)). In the literature,
several bands have been linked to carbohydrates due to their
associated functional groups. Within the fingerprint region,
peaks that result due to the polysaccharides include (P1)
897 cm−1 and (P2) 1030 cm−1 from the C-H deformation in
cellulose and C-O stretch in polysaccharides, respectively,
(P3) 1157 cm−1 from C-O-C vibration, (P4) 1239 cm−1 from
C-O stretch and O-H in plane in polysaccharides, (P5)
1465 cm−1 from C-H deformation, and (P6) 1740 cm−1 from
the C=O stretching of unconjugated ketones mostly in the
hemicelluloses. In the case of lignin, the peak at (L1) 1122 cm−1
occurs due to aromatic skeletal and C-O stretch. Guaiacyl
ring breathing with C-O stretching causes a peak to rise
at (L2) 1270 cm−1 and syringyl ring breathing creates the
peak at (L3) 1365 cm−1. The strong peak at (L4) 1505 cm−1
is attributed to the C=C stretch characteristic of aromatic
skeletal compounds in lignin and extractives. Outside the
fingerprint range (Figure 1(b)), the peaks occurring at (T1)
2935 cm−1 have been associatedwith the bending and stretch-
ing of C-H, as well as its aromatic ring vibration in lignin,
whereas that at (T2) 3345 cm−1 has been assigned to bonded
O-H [1, 23–26].

The four biomass types followed a similar absorbance
pattern in the mid infrared region. Slash generally had the
highest absorbance values, followed by wood, whole, and
then wood and bark. The spectra of slash had prominent
peaks at (L5) 1635 cm−1 and (T1) 2935 cm−1 compared to the
other biomass types. The former has been attributed to C-
O stretching of conjugated or aromatic ketones and/or C=O
stretching vibration in flavones, and the latter results from the
aromatic ring vibration in lignin [27–29]. These high peaks
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Figure 2: Descriptive statistics of the chemical composition of forest logging residue. NB: bars represent ± standard error.

could thus be explained by the significantly high contents of
extractives and lignin in slash Figure 1.

These assignments provide some insight into the chemical
moieties present in the different biomass types. However,
the overlapping peaks make it challenging to tease out
subtle difference by simple visual inspection sometimes
[30]. As such, the application of multivariate data analytical
techniques to the spectra of lignocellulosic biomass helps
to extract relevant information and structure spectra and
conventionally acquired chemical data into empirical math-
ematical models that are capable of predicting properties
of future measurements and even other properties that
are not directly measurable [31]. Scatter, stray light, path
length variation, inconsistency in instrument response, and
random noise can cause interferences such as baseline shifts,
vertical displacements, and nonuniform slope in infrared
spectra. Pretreatment methods including standard normal
variate (SNV) transformation, multiplicative scatter correc-
tion (MSC), derivatives, and orthogonal signal correction
(OSC) are therefore usually used to minimize, standardize,
or even eliminate the impacts of these interferences on
IR spectra before multivariate data analysis to improve the
robustness of calibration models. In this study, the first
derivatives of spectra were used to reduce baseline offsets and
improve the resolution of overlapping peaks [32].

3.2. PLS Modeling of the Chemical Composition of Forest
Logging Residue. The chemical composition of forest logging
residue determined via conventional methods is summarized
in Figure 2. Some significant differences (𝛼=0.05)were noted
among the four biomass types. The mean concentration of
extractives ranged from a low of 2% for wood and bark
to a high of 10% for slash. The percentage of glucose was
significantly lower in slash (27%) and whole (34%) compared
to wood and bark (41%) and wood (45%). This pattern was
unsurprisingly followed by the amount of cellulose in the
four types of forest logging residue. Whole had the highest
amount of hemicelluloses, and this was statistically similar to
the concentrations found in slash and wood and bark.

Using spectra as the independent variable and ameasured
property as the dependent variable, all forty biomass samples

were employed in the calibration and cross validation of
PLS predictive models. Models were developed using raw
or 1st-derivative spectra of first entire MIR range and then
the fingerprint region. As is generally the case, models built
with 1st-derivative treated spectra have better predictive
capabilities compared to those calibrated with untreated
spectra; thus only results of the former are presented in this
paper (Table 1). Optimum models were chosen as those that
used a lesser number of latent variables (LVs) to produce
smaller error values. Another consideration in final model
selection was a small difference between the SEC and SECV.
The SECV (which is a better measure of a model’s predicting
ability of future unknowns) is usually larger than the SEC
(a statistic that evaluates how precisely the regression line
fits the training data) because it also takes into consideration
how much worse a model performs on independent test data
not originally included in model calibration. However, the
SECV ideally should be no greater than 1.3 times the SEC [33].
A big difference in SEC and SECV results when calibration
models do a poor job of predicting the property under study
for samples that were used in cross validation.

Two or three LVswere used in the development ofmodels
that had 𝑅2 values ranging from a low of 0.64 for galactose
to a high of 0.93 for extractives (Table 1). Although 𝑅2 is an
indicator of a good model (when greater than 0.5), it was not
used as the sole assessor of models because it usually has a
direct relationship with the number of LVs used in model
development. When more LVs are added in calibration, a
model continues to fit random errors until every source of
variation is accounted for in the training data [34]. The RPD,
which is computed as the ratio of standard deviation of the
validation set to the standard error of prediction (SEP), was
used to compare the predictive ability of models. Except
for galactose, xylose, and hemicelluloses, the RPD values of
models developed to predict the chemical components of
forest logging residue fell within the preliminary screening
criteria (i.e., 1.5–2.5) [35]. The model for extractives was the
most robust, having an RPD of 2.3.

PLS modeling of MIR spectra did a better job of pre-
dicting the extractives and lignin content of loblolly pine
logging residue compared to the structural carbohydrates
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Table 1: Performance evaluation of PLS models developed using 1st-derivative treated spectra of the full (i) and fingerprint (ii) regions for
predicting chemical composition.

Constituent
(%) Extractives Lignin Cellulose Hemicelluloses Glucose Arabinose Galactose Mannose Xylose Holocellulose

LVs
(i) 2 2 2 3 2 2 3 3 2 2
(ii) 2 2 2 3 2 2 3 3 2 2

SEC
(i) 0.93 1.58 3.89 1.32 3.71 0.36 1.09 0.85 0.74 3.92
(ii) 1.03 1.77 4.04 1.61 3.88 0.4 1.03 0.82 0.76 4.25

SECV
(i) 1.4 2.02 5.1 3.58 4.6 0.46 1.87 1.87 1.13 5.05
(ii) 1.18 2.04 4.58 3.46 4.4 0.46 2.05 1.84 1.06 4.79
𝑅2

(i) 0.93 0.86 0.74 0.82 0.77 0.77 0.64 0.71 0.7 0.73
(ii) 0.91 0.83 0.72 0.74 0.75 0.72 0.67 0.73 0.68 0.68

RPD
(i) 2.34 2.06 1.46 0.85 1.63 1.57 0.93 0.81 1.16 1.45
(ii) 2.83 2.04 1.61 0.87 1.7 1.6 0.85 0.84 1.24 1.53

and their associated monomeric sugars in this study. The
best performing models were for glucose and arabinose
both of which had 𝑅2 of 0.77 and RPD of 1.6, whereas the
worst performing models were for galactose and mannose
and the other two hexoses. Poor prediction of monomeric
sugars has been attributed to similar conformation of sugars
that only differ in the orientation of some hydroxyl groups.
In a previous study [22], galactose, mannose, xylose, and
consequently hemicelluloses were also poorly predicted by
near infrared- (NIR-) based PLS models. Similarly poor per-
formingmodelswere obtained by [36] for galactose (𝑅2 =0.11,
RPD = 0.8) and hemicelluloses (𝑅2 = 0.30, RPD = 1.0).
Since FTIR spectroscopy detects fundamental molecular
vibrations as opposed to the overlapping and usually weaker
combination bands in NIR, PLS models developed in this
study were expected to do a better job of predicting the
monomeric sugar content of forest logging residue, but this
unfortunately was not the case.

The entire MIR range and fingerprint region were also
used to model the lignin, cellulose, and extractives of wood
samples including Scots pine, Sitka spruce, and tropical
hardwoods from Ghana [28]. The authors reported the per-
formance statistics of PLS models as follows: cellulose: 𝑅2 =
0.65, SEC = 1.8, and SEP = 3.3; lignin: 𝑅2 = 0.65, SEC =
1.8, and SEP = 3.3; and extractives: 𝑅2 = 0.93, SEC =
0.3, and SEP = 0.4. The seeming trend of infrared-based
PLS models predicting the lignin and extractives of biomass
relatively better than the polysaccharides was noted in this
study also and again in [37] when both diffuse reflectance
(DRIFT) and transmission FTIR spectra were used in PLS
modeling. A possible explanation of this trend could be the
distinctive chemical structures of lignin and extractives, as
opposed to the relative abundance of carbohydrates that have
similar molecular makeup. Another study that quantitatively

characterized the chemical composition of untreated wood
was by [38]. The researchers developed DRIFT-PLS models
for lignin (𝑅2 = 0.66, SEP = 1), extractives (𝑅2 = 0.97,
SEP = 0.9), arabinose (𝑅2 = 0.79, SEP = 0.1), galactose (𝑅2 =
0.80, SEP = 0.3), glucose (𝑅2 = 0.57, SEP = 1.7), mannose
(𝑅2 = 0.63, SEP = 0.8), and xylose (𝑅2 = 0.73, SEP = 0.5).
The standard deviations of the training data and prediction
errors ofmonomeric sugars reported by the authors were low,
even though the 𝑅2 values are similar compared to what was
obtained in current study.

For a fairer comparison of model performance, the same
number of LVs that were retained as optimum for full spectra
(4000–650 cm−1) models was used in developing reduced
spectra (1800–650 cm−1) models. Reducing the wavenumber
range to the fingerprint region did not adversely affect the
performance of PLS models (Table 1). In fact, this gener-
ally decreased the errors associated with cross validation
(employed as the SEP in current study) and improved RPD
values for all models except that for lignin (full: SECV = 2.02,
RPD=2.06; reduced: SECV=2.04, RPD=2.04) and galactose
(full: SECV = 1.87, RPD = 0.93; reduced: SECV = 2.05,
RPD = 0.85) (Table 1). Lowered SECV and improved RPD
values are an indication that a model’s predictive capability is
reduced when irrelevant wavenumbers are included inmodel
construction.

The relationships between laboratory reference data
and FTIR-predicted chemical constituents are presented in
Figure 3.

3.3. PLSModeling ofThermal Reactivity and Energy Content of
Forest Logging Residue. Summary statistics from proximate
analysis and bomb calorimetry are presented in Figure 4.
Ash content was significantly lower in wood compared to
the other three biomass types as expected. In contrast, wood
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Figure 3: A regression plot of wet chemistry-measured versus FTIR-predicted values for chemical composition. (a)Modeledwith full spectra;
(b) modeled with fingerprint region.
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Figure 4: Descriptive statistics of the thermal reactivity and energy content of forest logging residue. NB: bars represent ± standard error.

had the highest amount of volatile matter. Fixed carbon
ranged from a low of 8.9% in wood to a high of 16.2% in
slash. Among the four biomass types, whole and wood and
bark samples were more similar in their thermal reactivity
and energy content. The higher heating value (HHV) which
is the maximum amount of energy that can be potentially
recoveredwhen fuel is completely combusted under adiabatic
conditions ranged from 19.8 (MJ/kg) to 20.6 (MJ/kg) for
loblolly pine logging residue.

Two or three LVs were used in PLSmodeling of the full or
reduced MIR spectra. Fit statistics of cross validated models
calibrated with the 1st derivative of spectra are presented in
Table 2.

For the reduced spectra of volatile matter content, two
LVs gave the lowest values of SEC (1.03%) and SECV (1.15)

falling within the ideal difference range. This optimized
model had 𝑅2 of 0.88 and an RPD of 2.3. This was a 6%
improvement over the RPD value of the model developed
using the full MIR range. Similarly, utilizing the fingerprint
region slightly improved the RPD value of the model for
predicting percent fixed carbon. Correlations of ash content
with spectra data were quite high, although the RPD values
were less than 1. Unlike for the organic components of
forest biomass, developing models with the reduced spectra
for the inorganic ash increased both the SEC and SECV
and reduced the 𝑅2 and RPD values. Poor performance
was also reported for full spectra FTIR-based PLS models
constructed to predict the ash content of two energy crops
(SEC = 1.02, SECV = 1.08, and 𝑅2 = 0.48) [18]. However,
the authors in [4] were able to better model the ash content of
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Table 2: Performance evaluation of PLS models developed using 1st-derivative treated spectra of the full (i) and fingerprint (ii) regions for
predicting thermal reactivity and energy content.

Constituent Ash (%) Fixed carbon (%) Volatile matter (%) HHV (MJ/kg)
LVs

(i) 3 2 2 2
(ii) 3 2 2 2

SEC
(i) 0.49 1.26 1.07 0.34
(ii) 0.6 1.35 1.03 0.38

SECV
(i) 1.07 1.6 1.31 0.53
(ii) 1.09 1.54 1.15 0.44
𝑅2

(i) 0.8 0.85 0.87 0.64
(ii) 0.7 0.83 0.88 0.54

RPD
(i) 0.98 1.96 2.17 1.03
(ii) 0.96 2.04 2.31 1.23
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Figure 5: Regression spectra showing some common wavenumbers that made significant contribution to the modeling of extractives (%) (a)
and HHV (MJ/kg) (b).

torrefied biomass. Simplemonoatomic inorganic compounds
do not produce any vibrations in the mid (or near) infrared
region. However, these form complexes with organic species
to produce characteristic bands. As such, FTIR andNIR spec-
troscopy have been capable of quantitative and qualitative
analysis of the ash in biomass, polymers, and so forth [30].

Energy content is known to be influenced by the chemical
composition of biomass. Lignin, (which can have as much as
twice the calorific value of the carbohydrates) and extractives
are mostly credited for this [39]. Consequently, FTIR spec-
troscopy which is sensitive to chemical signals has been used
to model the HHV of biomass. PLS models constructed in
this study to predict the HHV however did not perform very
well. The 𝑅2 values of models were 0.64 and 0.54 and RPD
values were 1.03 and 1.23 using the full and reduced spectra,
respectively (Table 2).

Simple linear regression models were developed to
explore the relationship between the chemical composition of

forest logging residue and HHV. Only the extractive content
had somemeaningful linear correlationwithHHV (𝑅2 = 0.31,
𝑝 value < 0.05), suggesting that the correlation between FTIR
spectra and HHV is a secondary function of the correlation
between the extractives and spectra.There have been conflict-
ing reports in the literature about how especially lignin corre-
lates with energy content [40, 41]. Comparing the regression
spectra of extractives to that of HHV showed some com-
monwavenumbers/peaks thatmade significant contributions
to the modeling of the two properties, supporting results
from the regression analysis (Figure 5). Peaks were noted
at 1620 cm−1 (skeletal aromatic C=C in plane vibration),
1440 cm−1 (C-O stretching, plus OH deformation of car-
boxylic acids or C-C stretching of aliphatic aldehydes), and
1190 cm−1 (C-O stretching of higher esters) [42]. However,
unlike for the extractives, the peaks occurring in the regres-
sion spectrum of HHV could not account for as much of its
variation, thus, the bad prediction performance of thismodel.



8 Journal of Analytical Methods in Chemistry

0 30 60 90

Ash
Fixed carbon

Volatile matter
HHV (MJ/kg)

Measured values

0

30

60

90
FT

IR
 sp

ec
tro

sc
op

y-
pr

ed
ic

te
d 

va
lu

es
 (%

)

(a)

Ash
Fixed carbon

Volatile matter
HHV (MJ/kg)

0

30

60

90

FT
IR

 sp
ec

tro
sc

op
y-

pr
ed

ic
te

d 
va

lu
es

 (%
)

0
Measured values

30 60 90

(b)

Figure 6: Regression plot of measured versus FTIR-predicted values for thermal reactivity and energy content. (a) Modeled with full spectra;
(b) modeled with fingerprint region. Percent except for HHV.

A scatter plot of how FTIR-based PLS models predicted
the thermal reactivity and HHV as compared to results
determined via proximate analysis and bomb calorimetry is
presented in Figure 6.

4. Conclusions

FTIR spectra of forest logging residue made up of whole
tree, wood and bark, slash, and wood were acquired and
related to the chemical and thermal reactivity and energy
content of the biomass. PLS models were developed with the
raw and 1st derivative of spectra spanning the entire MIR
region or the fingerprint region. For chemical composition,
developed models generally did a better job of predicting the
extractives and lignin content than the carbohydrates; for the
thermochemical properties, models for volatile matter and
fixed carbon performed very well (i.e., 𝑅2 > 0.80, RPD > 2.0).
Reducing the wavenumber range to the fingerprint region for
PLS modeling did not compromise the predictive ability of
models. In fact, thismostly reduced the errors associatedwith
prediction and improved the RPD values.

This study demonstrated that the chemical and thermo-
chemical properties of forest logging residue can be predicted
with FTIR spectroscopy coupled with PLS. The accuracies of
prediction models constructed for this very heterogeneous
biomass feedstock were comparable to that measured via
lengthy and laborious conventional methods. The suite of
important biomass properties understudied was predicted
from a single FTIR spectrum without having to do any extra
work for each of the properties. Thus FTIR spectroscopy
can be employed as a high throughput tool for monitoring
and characterizing this largely untapped resource to optimize
processes in biorefineries thatwill dependon logging residues
as newmarkets emerge and conversion technologies advance
in the low carbon bioeconomy.
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