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ABSTRACT
Cluster perturbation (CP) theory was developed in Paper I [F. Pawłowski et al., J. Chem. Phys. 150, 134108 (2019)] for a coupled cluster (CC)
target state and is extended in this paper to comprehend a cluster linear (CL) target state, for which the embedding of a CC parent state in
the target excitation space is described using a linear parametrization. The theory is developed for determining the energy and molecular
properties for a CL state. When CP theory is applied to a CL target state, a series of corrections is determined in orders of the CC parent-state
similarity-transformed fluctuation potential, where the zeroth-order term is the energy or molecular property of the CC parent state and
where the series formally converges to the energy or molecular property of the CL target state. The determination of energies and molecular
properties is simpler for a CL state than for a CC state because the CL state is linearly parametrized. The amplitude equations are quadratic for
a CL target state, while quartic for a CC target state, and molecular property expressions for a CL target state have the same simple structure
as for a configuration interaction state. The linear parametrization introduces non-size-extensive contributions in the energy and molecular
property expressions. However, since the linear parametrization describes the embedding of the CC parent state in the target excitation
space, the energy and molecular properties for a CL state are weakly size-extensive. For the energy, weak size-extensivity means that non-
size-extensive contributions enter in sixth and higher orders in the CP energy series, whereas for molecular properties, weak size-extensivity
means that non-size-extensive contributions enter in second and higher orders. Weak size-extensivity therefore has a little or vanishing effect
on calculated energies or molecular properties. The determination of the CP energy and molecular property corrections does not require that
amplitude or response equations are solved explicitly for the target state and it becomes computationally tractable to use low-order corrections
from these series to obtain energies and molecular properties of CL target state quality. For three simple molecules, HF, N2, and CH2, the
accuracy of the CL approach for ground-state energies is tested using a parent state including single and double excitations (i.e., the CC
singles-and-doubles state, CCSD) and a target state that includes triple excitations. It is found that the size-extensive fifth-order CL energies
deviate by less than 0.0001 hartree from the energies of a target CC that includes triple excitations (i.e., the CC singles-doubles-and-triples
state, CCSDT). CP theory with a CL target state therefore becomes a very attractive replacement of standard CC theory for high-accuracy
energy and molecular property calculations, in which triple and higher excitation levels are considered.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5053627

I. INTRODUCTION

In Paper I,1 we introduced a new class of perturbation
models—the cluster perturbation (CP) models—for which the
major drawbacks of Møller-Plesset perturbation theory (MPPT)2,3

and coupled cluster perturbation theory (CCPT)4–6 have been
overcome. The theoretical foundation for CP theory is given in
Paper I.1

In CP theory, we consider a target excitation space, relative
to a Hartree-Fock state, and partition the target excitation space
into a parent excitation space and an auxiliary excitation space.
In CP theory, the zeroth-order state is a CC state in the parent
excitation space. In Paper I,1 the target state of CP theory was
assumed to be a CC state in the target excitation space. In CP the-
ory, we determine perturbation series for energies and molecular
properties in orders of the perturbation—the CC parent-state
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similarity-transformed fluctuation potential—where the zeroth-
order term in the series is the energy or molecular property of the
CC parent state and where the CP series formally converges to the
energy or molecular property of the CP target state. Molecular prop-
erties in CP theory are determined using response function theory,
where the response functions for the CC parent state determine the
molecular property for the CC parent state and the response func-
tions for the CP target state determine the molecular property for
the CP target state. From the response functions and their residues,
molecular properties can be determined for the ground state, for
excited states, and for transitions between these states, including
excitation energies.

In Paper I,1 the theoretical foundation for CP theory is devel-
oped. CP series are described for the ground-state energy, and it is
shown that CP series exist for molecular properties including exci-
tation energies. Test calculations are reported in Paper I1 for CP
series for the ground-state energy. The test calculations show a great
promise, and judging from the results of the test calculations, effi-
cient implementations of low-order CP models will soon become
state-of-the-art models for the determination of the correlation
energy.

In Paper II,7 the CP series are developed for excitation ener-
gies. Test calculations of the CP excitation energy series are also
presented in Paper II.7 The test calculations also show a great
promise, as the test calculations for the CP series for the ground-
state energy in Paper I.1 In Paper III,8 the performance of the low-
order members of the CP excitation energy series, CPS(D-n), is
reported where excitation energy corrections to a CC singles (CCS)
excitation energy are determined and where the series formally con-
verges to a CC singles-and-doubles (CCSD) excitation energy. The
first-order correction, CPS(D-1), vanishes and the second-order cor-
rection, CPS(D-2), gives the well-known configuration-interaction
singles with a perturbative doubles correction [CIS(D)] model of
Head-Gordon et al.9 In Paper III,8 we report an efficient imple-
mentation of the CPS(D-2) and CPS(D-3) models and carry out a
sequence of benchmark calculations and statistical analysis of their
errors for a test set of organic molecules10 containing 69 valence
and Rydberg states. For single-configuration dominated excitations,
the maximum and mean absolute errors (∆max, ∆abs), obtained by
comparison with CCSD excitation energies, are (0.96 eV, 0.30 eV)
for CPS(D-2) and (0.14 eV, 0.07 eV) for CPS(D-3). The CPS(D-
3) model can therefore be used to obtain excitation energies of
CCSD quality in the sense that the difference between CPS(D-3)
and CCSD excitation energies is of the same size or smaller than
the effect of adding triples corrections to CCSD excitation energies.
The computational cost of a CPS(D-3) excitation energy calculation
is only a few percent of the cost of a conventional CCSD excita-
tion energy calculation. CPS(D-3) calculations were also reported
in Paper III8 for system sizes that are far beyond the size for which
a conventional CCSD calculation can be carried out. We also note
that the CPS(D-3) calculations are well suited for an efficient mas-
sively parallel implementation as will be described in a coming
publication.

The promises that CP series have given for an efficient and cost
effective determination of the energy and molecular properties make
it natural to ask whether CP theory can further be simplified without
compromising the performance of the CP series. It is this question
that will be addressed in the present article.

In CP theory, the molecular system is described at zeroth-order
by a CC state in the parent excitation space and the corrections to the
CC parent state description then will converge towards the CC target
state description. The CC target state description can in CP theory be
viewed as a CC parent state description that is embedded in an expo-
nentially parametrized target excitation space. The CC parent state
description is size-extensive, and the disconnected contributions in
the CC target state are therefore described to high accuracy by the
CC parent state. The embedding of the CC parent state using an
exponential parametrization can therefore be replaced by an embed-
ding in a linearly parametrized target excitation space without com-
promising the accuracy of the calculation. In this paper, we describe
how this can be done by introducing a cluster linear (CL) state where
the CC parent state is embedded in a linearly parametrized target
excitation space.

The advantage of using a CL target state with a linearly
parametrized target excitation space, over a CC target state with an
exponentially parametrized target excitation space, is that the series
of perturbation corrections simplifies due to the linear parametriza-
tion. The amplitude equations are thus quadratic for a CL state,
whereas they are quartic for a CC state, and the molecular proper-
ties for a CL state have the same simple structure as for a conven-
tional linearly parametrized configuration interaction (CI) state.11

These simplifications come at the price of the energy and molecular
properties becoming not size-extensive. However, since the linear
parametrization of the CL target state describes an embedding of
a CC parent state, which is exponentially parametrized, in a target
excitation space, the non-size-extensive contributions to the energy
and molecular properties become much smaller than for a conven-
tional linearly parametrized CI state. In fact, the energy and molecu-
lar properties for a CL target state are weakly size-extensive, where
the weak size-extensivity is defined in terms of the CP series for
the energy and molecular properties. For the energy, weak size-
extensivity means that non-size-extensive contributions enter in
sixth and higher orders in CP theory, while for molecular properties,
weak size-extensivity means that non-size-extensive contributions
enter in second and higher orders. The fact that energies and molec-
ular properties are weakly size-extensive means that the non-size-
extensive contributions have little effect on the calculated energy or
molecular properties.

For a CL target state, the CC parent state must contain at least
the singles-and-doubles excitation space in order for the CL state
to describe the important disconnected contributions in the wave
function through the CC parent state, for example, the disconnected
quadruple excitation formed by a product of two double excita-
tions.12,13 In general, CL target states will further be restricted to have
an auxiliary space that contains only one excitation level. The rea-
son is that when auxiliary spaces contain more than one excitation
level, too much effort is spent on optimizing amplitudes at the high-
est excitation levels, which are computationally most demanding,
for amplitudes that are far from converged at the lower excitation
levels.

CL states have not been previously considered in electronic
structure theory and their features, described above, may make them
an attractive alternative to CC states even outside the CP frame-
work (i.e., even without considering perturbative approximations
to CL states). Therefore, before embarking on the development
of CP theory for CL target states, we will describe in the initial
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part of this paper the theoretical foundation for the CL states. The
theoretical development for determining the energy and molecu-
lar properties for a CL state follows an outline similar to the one
for a CC state (see, for example, Refs. 12 and 13 for the CC energy
and Refs. 11 and 14–16 for CC molecular properties). In particular,
molecular properties are determined from the response functions for
the CL state and are derived in this article following an outline simi-
lar to the one used in Ref. 11 for deriving response functions for a CC
state.

The CL state is linearly parametrized, and the time evolution of
the CL state is also linearly parametrized when the response func-
tions are determined. In order to determine the response functions
for a CL state, it is imperative to use the developments in response
function theory described in Ref. 11. However, when this is done,
CL states can be used as target states in CP theory and perturba-
tion series in orders of the CC parent-state similarity-transformed
fluctuation potential can be determined for molecular properties,
where the zeroth-order term is the molecular property for the CC
parent state and where the series formally converges to a molecu-
lar property for the CL target state. Because the parent state is a
CC state and because the time evolution of the CL target state is
linearly parametrized, the zeroth-order molecular properties (the
molecular properties of the CC parent state) become equation-of-
motion coupled cluster (EOM-CC) molecular properties expressed
in the form described by Coriani et al.17 EOM-CC molecular prop-
erties were introduced by Stanton and Bartlett18 for calculation of
dipole moments of excited states and dipole transition strengths and
obtained by replacing the exact states in the exact-state molecular
property expressions with states determined by solving the EOM-CC
Hamiltonian eigenvalue equation.

CP models are characterized by a CC parent state defined in
the parent excitation space and by an auxiliary excitation space. This
can be expressed using a notation, in which the parent excitation
space is followed by the auxiliary excitation space in parentheses. For
example, CPSD(T) denotes a CP model with a CCSD parent state
and a triples auxiliary space. Furthermore, the notation CPSD(T)
implies that the CP target state is exponentially parametrized and
that molecular properties are determined from a time evolving target
state that is exponentially parametrized. If the time evolution is lin-
early parametrized, EOM-CC molecular properties17–19 are obtained
and the CP model will be labeled with an overline. For example,
CPSD(T) denotes that energy corrections are determined using an
exponential parametrization of the target state, whereas molecu-
lar properties are determined using a linear parametrization of the
time evolution of the target state. For a CL target state, the aux-
iliary space label is preceded with a label L to emphasize that the
effect of introducing an auxiliary space is described in terms of
a linearly parametrized excitation space. For example, CPSD(LT)
denotes a model with an exponentially parametrized CCSD parent
state embedded in a linearly parametrized target space and with
a linear parametrization of the time evolution. In this model, CP
energy corrections are determined, starting with CCSD energy as
zeroth-order, which formally converge to the CPSD(LT) target-state
energy. Similarly, CP molecular property corrections are determined
in this model, with EOM-CCSD molecular properties as zeroth-
order, which formally converge to CPSD(LT) target-state molecu-
lar properties. We also note that if the auxiliary excitation space is
followed by a number, as, for example, in CPSD(LT), the number

denotes that perturbation corrections are determined through that
order.

In Sec. II, we describe the theoretical foundation for intro-
ducing CL states. In Sec. III, the energy and amplitude equations
are derived for a CL state. In Sec. IV, the energy Lagrangian20,21

is set up for a CL state and used to determine a perturbation
series for the energy. In particular, the perturbation series for the
energy is determined for the CPSD(LT) model, for which the tar-
get state is a CL state with a CCSD parent state embedded in a
linearly parametrized singles-doubles-and-triples target excitation
space. We show that the ground-state energy corrections of this
series are identical through fourth order to the energy corrections for
the series CPSD(T) derived in Paper I1 and that non-size-extensive
contributions for the CPSD(LT) energy series first enter at sixth
order. Section IV includes numerical tests of the accuracy of the
CPSD(LT) ground-state energy corrections through sixth order for
the simple molecules HF, N2, and CH2. For these molecules, it is
shown that the accuracy of the energies obtained through fifth order
using the CPSD(LT) method is equal to the accuracy obtained using
the CPSD(T) method through fifth order. We describe in Sec. V
how response functions can be determined for a CL target state and
how molecular properties obtain the simple structure of CI molecu-
lar properties. In Sec. VI, we determine, for the CPSD(LT) model,
explicit expressions for the lowest-order corrections for the exci-
tation energies and for the linear response function. Section VII
contains a summary and conclusions.

II. CLUSTER LINEAR (CL) TARGET STATE
A. Standard coupled cluster theory

In CC theory,12,13 the wave function is exponentially parametrized

∣CC⟩ = eT ∣HF⟩, (1)

where the cluster operator

T = ∑

µi
tµiθµi (2)

contains the cluster amplitudes tµi and the many-body excitation
operators θµi that act on the Hartree-Fock state |HF⟩ producing its
orthogonal complement set of states

∣µi⟩ = θµi ∣HF⟩. (3)

In Eqs. (2) and (3), i denotes an excitation level and µi denotes an
excitation at this level.

The CC Schrödinger equation can be expressed as

e−TH0eT ∣HF⟩ = E0∣HF⟩, (4)

where H0 is the Hamiltonian and E0 is the ground-state energy. The
CC Schrödinger equation can be solved by projection against the
basis ⟨B∣ = ∣B⟩

†, where

∣B⟩ = {∣HF⟩, ∣µi⟩}, i = 1, 2, . . . , (5)

leading to the CC energy and amplitude equations
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E0 = ⟨HF∣e−TH0eT ∣HF⟩ = ⟨HF∣H0∣HF⟩ + ⟨HF∣H0T2∣HF⟩

+
1
2
⟨HF∣H0T2

1 ∣HF⟩, (6)

⟨µi∣e−TH0eT ∣HF⟩ = 0, (7)

where we have used the Brillouin theorem to obtain the energy in
Eq. (6). In a standard CC calculation, a CC state is determined for
a truncated excitation space, denoted as the target excitation space.
The amplitude equations in Eq. (7) are solved in the target excitation
space and the energy is determined from Eq. (6).

B. Linearly parametrized CL target state
In CP theory, we partition a target excitation space (1 ≤ i ≤ t)

into a parent excitation space (1 ≤ i ≤ p) and an auxiliary excitation
space (p < i ≤ t). The zeroth-order state in CP theory is a CC state in
the parent excitation space

∣CC∗
⟩ = e

∗T
∣HF⟩, (8)

where the cluster amplitudes satisfy the CC amplitude equations in
the parent excitation space

⟨µi∣e−
∗TH0e

∗T
∣HF⟩ = 0, 1 ≤ i ≤ p, (9)

∗T =
∗T1 +⋯ + ∗Tp, (10)

∗Ti = ∑
µi

∗tµiθµi , 1 ≤ i ≤ p, (11)

with the energy

∗E0 = ⟨HF∣e−
∗TH0e

∗T
∣HF⟩. (12)

The target state in Paper I1 was a CC state parametrized with the CC
parent state as the expansion point

∣CC⟩ = eδT+∗T
∣HF⟩ = eδT ∣CC∗

⟩, (13)

where

δT =

t
∑

i=1
∑

µi
δtµiθµi . (14)

The CC target state in Eq. (13) can be viewed as a CC parent state
embedded in an exponentially parametrized target excitation space.
In this paper, we extend CP theory to encompass CP target states, for
which the embedding of the CC parent state in the target excitation
space is described using a linear parametrization. We refer to such
CP target states as CL target states.

To understand how the CP model can be extended to include
a CL target state, we expand the CC target state wave function in
Eq. (13) as

∣CC⟩ = e
∗T+δT

∣HF⟩ = e
∗T

(1 + δT +
1
2!
δT2 +

1
3!
δT3 +⋯)∣HF⟩. (15)

The CC target state can thus be viewed as a CP parent state, e
∗T

∣HF⟩,
that is corrected due to the effect of introducing an auxiliary
space.

In Paper I,1 we described how the cluster amplitudes δtµi in
Eq. (14) can be determined using CP theory. The perturbation analy-
sis in Paper I1 shows that the cluster amplitudes δtµi vanish in zeroth
order and that the only δtµi amplitudes that contribute in first order
are the amplitudes in the auxiliary space, p < i ≤ t. Relaxation of the
parent state amplitudes δtµi , 1 ≤ i ≤ p, due to the presence of auxiliary
space amplitudes, enters in second order. The amplitudes in the δT
operator are therefore small, and the terms that are quadratic and
higher in δT in Eq. (15) and represent disconnected contributions
hence are very small. With only small changes in the parameters
of the wave function in Eq. (15), we can therefore re-parametrize
Eq. (15) in terms of a linear expansion and obtain the CL target
state

∣CL⟩ = e
∗T

(1 +
t
∑

i=1
∑

µi
zµi ∣µi⟩⟨HF∣)∣HF⟩ = e

∗TeZ ∣HF⟩, (16)

where

Z =

t
∑

i=1
∑

µi
∣µi⟩⟨HF∣zµi , (17)

recalling that the action of the state-transfer operator |µi⟩⟨HF| on the
|HF⟩ state is equal to the action of the many-body orbital-excitation
operator θµi on the |HF⟩ state,

∣µi⟩ = (∣µi⟩⟨HF∣)∣HF⟩ = θµi ∣HF⟩, (18)

and that
Z2

= 0. (19)

The |CL⟩ state in Eq. (16) is intermediate normalized against the
|HF⟩ state and has the parent CC state as its dominant compo-
nent. Furthermore, the expansion coefficients zµi in Eq. (16), which
describe the effect of the auxiliary space, are small and similar in size
to the δtµi amplitudes in Eq. (15).

The linear parametrization of the |CL⟩ state in Eq. (16) leads
to energies and molecular properties that are not size-extensive.
However, the size-extensivity problems are due to the fact that
the small disconnected terms that are quadratic and higher in
δT in Eq. (15) are neglected. The size-extensivity problems that
arise when using the |CL⟩ state to calculate energies and molecu-
lar properties are therefore weak compared to the size-extensivity
problems that arise for standard truncated CI linear expansions,
where large disconnected contributions are neglected. To see this,
we Taylor expand the operator e

∗T in the |CL⟩ wave function of
Eq. (16)

∣CL⟩ = (1 + ∗T +
1
2!

∗T2 +⋯)(1 + Z)∣HF⟩ (20)

and compare this expansion with a conventional CI intermediate-
normalized linearly expanded wave function

∣CI⟩ = (1 + Z)∣HF⟩. (21)

The |CL⟩ wave function does contain disconnected higher-
excitation contributions, e.g., a large ∗T2

∣HF⟩ disconnected contri-
bution, which are not present in the |CI⟩ wave function. It is these
disconnected contributions in the |CL⟩ wave function that make
the non-size-extensivity of energies and molecular properties weak
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compared to the non-size-extensivity that is encountered when a
conventional linearly expanded CI wave function is used. In another
perspective, in CC theory, the disconnected contributions of a CC
wave function ensure that CC energies and molecular properties are
size-extensive. For the |CL⟩ wave function, these disconnected con-
tributions are described to high accuracy by the parent CC state,
and energies and molecular properties that are determined using
the |CL⟩ wave function therefore become size-extensive to high
accuracy.

From the expansion in Eq. (20), we also see that the first large
disconnected contribution that arises from the parent state is the dis-
connected quadruples contribution, ∗T2

2 ∣HF⟩. We therefore restrict
|CL⟩ target states to states where the parent CC state contains at
least doubles excitations, i.e., where p ≥ 2. If the parent CC state is
restricted to contain only single excitations, i.e., p = 1, the |CL⟩ tar-
get state gives a conventional CI description of the molecular system,
but using a non-conventional parametrization.

III. ENERGY AND AMPLITUDE EQUATIONS
FOR A CL TARGET STATE

In Sec. II, we introduced CL target states. In Sec. III A, we
describe how the amplitudes and the energy can be determined for
CL target states. In Sec. III B, a perturbation analysis is carried out for
the amplitude equations of the CL state and it is discussed through
which order in CP perturbation theory the CL amplitudes are size-
extensive. In particular, we discuss in Sec. III C that for CL models,
for which the auxiliary space is restricted to contain only one excita-
tion level, the CL ground-state energy is size-extensive through fifth
order.

A. Energy and amplitude equations
The similarity-transformed Schrödinger equation for the CL

target state in Eq. (16) becomes

e−Ze−
∗TH0e

∗TeZ ∣HF⟩ = E0∣HF⟩ (22)

and can be solved by projecting Eq. (22) against the basis ⟨B∣ = ∣B⟩
†

[cf. Eq. (5)], giving the energy and amplitude equations

E0 = ⟨HF∣e−ZH
∗T
0 eZ ∣HF⟩ = ∗E0 +

2
∑

i=1
∑

µi
⟨HF∣H

∗T
0 ∣µi⟩zµi , (23)

⟨µi∣e−ZH
∗T
0 eZ ∣HF⟩ = 0, 1 ≤ i ≤ t, (24)

where we have used Eq. (12) and introduced the similarity-
transformed Hamiltonian

H
∗T
0 = e−

∗TH0e
∗T . (25)

To obtain the last term in Eq. (23), we have used the vector
⟨HF∣H

∗T
0 ∣µi⟩ which has non-vanishing components only in the

singles-and-doubles space.
Applying a Baker-Campbell-Hausdorff (BCH) expansion, the

amplitude equations in Eq. (24) can be written as

⟨µi∣H
∗T
0 ∣HF⟩Sip +

t
∑

j=1
∑

νj
⟨µi∣[H

∗T
0 , ∣νj⟩⟨HF∣]∣HF⟩zνj

− zµi
⎛

⎝

2
∑

j=1
∑

νj
⟨HF∣H

∗T
0 ∣νj⟩zνj

⎞

⎠

= 0, 1 ≤ i ≤ t, (26)

where to obtain the first term we have used Eq. (9) and introduced
the integer step function Sab

Sab = {

0, for a ≤ b
1, for a > b.

(27)

To obtain the last term in Eq. (26), we have used Z2 = 0. To deter-
mine the energy E0 for a CL target ground state [Eq. (23)], we thus
have to solve the quadratic amplitude equations in Eq. (26).

B. Perturbation analysis of amplitude equations
for a CL target state

To get an insight into the structure of the amplitude equa-
tions and the size-extensivity problems that arise due to the linear
parametrization of the CL state, we perform a perturbation anal-
ysis for the energy and the amplitude equations in Eqs. (23) and
(26), respectively. Introducing a Møller-Plesset partitioning of the
similarity-transformed Hamiltonian H

∗T
0 of Eq. (25)

H
∗T
0 = f

∗T + Φ
∗T , (28)

where f is the Fock operator in the canonical Hartree-Fock basis and
Φ is the fluctuation potential, Eqs. (23) and (26) become

E0 =
∗E0 +

2
∑

i=1
∑

µi
⟨HF∣Φ

∗T
∣µi⟩zµi , (29)

⟨µi∣Φ
∗T

∣HF⟩Sip +
t
∑

j=1
∑

νj
⟨µi∣[H

∗T
0 , ∣νj⟩⟨HF∣]∣HF⟩zνj

− zµi
⎛

⎝

2
∑

j=1
∑

νj
⟨HF∣Φ

∗T
∣νj⟩zνj

⎞

⎠

= 0, 1 ≤ i ≤ t, (30)

where we have used

⟨HF∣f
∗T

∣µi⟩ = 0, 1 ≤ i ≤ t, (31)

⟨µi∣f
∗T

∣HF⟩ = 0, p < i ≤ t. (32)

The second term in Eq. (30) contains the extended parent-state Jaco-
bian (i.e., the Jacobian that has a structure of the parent-state Jaco-
bian but indices referencing the whole target space) for a linearly
parametrized excitation space

Aµiνj =
∂

∂zνj
⟨µi∣e−ZH

∗T
0 eZ ∣HF⟩∣

zµi=0
= ⟨µi∣[H

∗T
0 , ∣νj⟩⟨HF∣]∣HF⟩

= ⟨µi∣H
∗T
0 ∣νj⟩ − δµiνj⟨HF∣H

∗T
0 ∣HF⟩, 1 ≤ i, j ≤ t. (33)

The extended parent-state Jacobian for a linearly parametrized exci-
tation space can be expressed in terms of the extended parent-state
Jacobian for an exponentially parametrized excitation space.1 To do
this, we write Eq. (33) as
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Aµiνj = ⟨µi∣[H
∗T
0 , θνj]∣HF⟩ + ⟨µi∣θνjH

∗T
0 ∣HF⟩ − δµiνj⟨HF∣H

∗T
0 ∣HF⟩,

1 ≤ i, j ≤ t, (34)

and introduce in the second term of Eq. (34) the resolution of the
identity in the complete orthonormal basis ∣B⟩ of Eq. (5)

⟨µi∣θνjH
∗T
0 ∣HF⟩ = ⟨µi∣θνj ∣HF⟩⟨HF∣H

∗T
0 ∣HF⟩

+ ⟨µi∣θνj
∞
∑

r=1
∑

λr
∣λr⟩⟨λr ∣H

∗T
0 ∣HF⟩

= δµiνj⟨HF∣H
∗T
0 ∣HF⟩ + ⟨µi∣θνj

∞
∑

r=p+1

×∑

λr
∣λr⟩⟨λr ∣Φ

∗T
∣HF⟩, 1 ≤ i, j ≤ t, (35)

where to obtain the second equality we have used Eqs. (9) and (32).
Substituting Eq. (35) into Eq. (34) gives

Aµiνj = ⟨µi∣[H
∗T
0 , θνj]∣HF⟩ +

∞
∑

r=p+1
∑

λr
⟨µi∣θνj ∣λr⟩⟨λr ∣Φ

∗T
∣HF⟩,

1 ≤ i, j ≤ t. (36)

The extended parent-state Jacobian for an exponentially parametrized
space is given in Eq. (27) of Paper I1

Aµiνj = ⟨µi∣[H
∗T
0 , θνj]∣HF⟩, 1 ≤ i, j ≤ t. (37)

Introducing Eq. (37) in Eq. (36) gives

Aµiνj = Aµiνj +
∞
∑

r=p+1
∑

λr
⟨µi∣θνj ∣λr⟩⟨λr ∣Φ

∗T
∣HF⟩, 1 ≤ i, j ≤ t. (38)

The extended parent-state Jacobian for an exponentially parametrized
state is in CP theory partitioned using the parent-state Jacobian
partitioning as described in Sec. II D of Paper I.1 Using the parent-
state Jacobian partitioning, the extended parent-state Jacobian for an
exponentially parametrized space can be written as [cf. Eqs. (29) and
(39) of Paper I1]

Aµiνj = A(0)µiνj + A(1)µiνj , (39)
where

A(0)µiνj = ⟨µi∣[H
∗T
0 , θνj]∣HF⟩(1 − Sip)(1 − Sjp) + ενjδµiνjSipSjp,

1 ≤ i, j ≤ t, (40a)

A(1)µiνj = ⟨µi∣[Φ
∗T , θνj]∣HF⟩(1− Sip)Sjp + ⟨µi∣[Φ

∗T , θνj]∣HF⟩Sip(1− Sjp)

+ ⟨µi∣[Φ
∗T , θνj]∣HF⟩SipSjp, 1 ≤ i, j ≤ t. (40b)

Using Eq. (39), we can write Eq. (38) as

Aµiνj = A(0)µiνj + A(1)µiνj +
∞
∑

r=p+1
∑

λr
⟨µi∣θνj ∣λr⟩⟨λr ∣Φ

∗T
∣HF⟩, 1 ≤ i, j ≤ t.

(41)

Introducing Eq. (41) in the amplitude equations in Eq. (30), we
obtain

t
∑

j=1
∑

νj
A(0)µiνjzνj = −⟨µi∣Φ

∗T
∣HF⟩Sip −

t
∑

j=1
∑

νj
A(1)µiνjzνj

+ zµi(
2
∑

j=1
∑

νj
⟨HF∣Φ

∗T
∣νj⟩zνj)

−

t
∑

j=1
∑

νj

∞
∑

r=p+1
∑

λr
⟨µi∣θνj ∣λr⟩⟨λr ∣Φ

∗T
∣HF⟩zνj ,

1 ≤ i ≤ t, p ≥ 2. (42)

Both the last and the second to the last term in Eq. (42) give rise
to non-size-extensive contributions. The non-size-extensive contri-
butions from the last term arise due to an inadequate description
of the Jacobian, and hence of the excitation space, in the case of
a truncated excitation manifold for a linear parametrization. The
non-size-extensive contributions from the second to the last term
arise more directly due to the linear parametrization of the wave
function.

The quadratic amplitude equations for the CL target ground
state in Eq. (42) should be contrasted to quartic amplitude equa-
tions for the CC target state, which in Eq. (30) of Paper I1 are given
as

t
∑

j=1
∑

νj
A(0)µiνjδtνj = − ⟨µi∣Φ

∗T
∣HF⟩Sip −

t
∑

j=1
∑

νj
A(1)µiνjδtνj

−
1
2
⟨µi∣[[Φ

∗T ,δT],δT]∣HF⟩

−
1
6
⟨µi∣[[[Φ

∗T ,δT],δT],δT]∣HF⟩

−
1

24
⟨µi∣[[[[Φ

∗T ,δT],δT],δT],δT]∣HF⟩,

1 ≤ i ≤ t, (43)

where δT is the cluster operator of Eq. (14) that contains the clus-
ter amplitudes δtµi of Eq. (43). The CL amplitude equations differ
from the CC amplitude equations by the last two non-size-extensive
terms in the CL equations which are replaced with the three last
term-wise size-extensive commutator terms in the CC amplitude
equations.12

Equations (42) and (43) give vanishing zeroth-order ampli-
tudes, and the first-order amplitudes from the two equations are
identical

z(1)µi = 0, 1 ≤ i ≤ p, (44a)

z(1)µi = −ε−1
µi ⟨µi∣Φ

∗T
∣HF⟩, p < i ≤ t. (44b)

At second order, the amplitudes become

t
∑

j=1
∑

νj
A(0)µiνjz

(2)
νj = −

t
∑

j=p+1
∑

νj
A(1)µiνjz

(1)
νj −

t
∑

j=p+1
∑

νj

∞
∑

r=p+1
∑

λr

× ⟨µi∣θνj ∣λr⟩⟨λr ∣Φ
∗T

∣HF⟩z(1)νj , 1 ≤ i ≤ t, (45)

where the last term is non-size-extensive and contributes to high
excitations, (2p + 2) ≤ i ≤ t, in the auxiliary space, since ⟨µi∣θνj ∣λr⟩
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in Eq. (45) is non-vanishing only for this excitation range. For the
third-order amplitudes, z(3)νj , we obtain

t
∑

j=1
∑

νj
A(0)µiνjz

(3)
νj = −

t
∑

j=1
∑

νj
A(1)µiνjz

(2)
νj −

t
∑

j=1
∑

νj

∞
∑

r=p+1
∑

λr

× ⟨µi∣θνj ∣λr⟩⟨λr ∣Φ
∗T

∣HF⟩z(2)νj , 1 ≤ i ≤ t,

(46)

since the third term in Eq. (42) does not contribute at third order

z(1)µi (

2
∑

j=1
∑

νj
⟨HF∣Φ

∗T
∣νj⟩z(1)νj ) = 0, 1 ≤ i ≤ t, p ≥ 2, (47)

as follows from Eq. (44a). The last term in Eq. (46) is non-size-
extensive and has non-vanishing contributions only in the auxiliary
space, since in Eq. (46) ⟨µi∣θνj ∣λr⟩ ≠ 0 only for i ≥ (p + 2). In addition,
the first term in Eq. (46) can contain non-size-extensive contribu-
tions originating from the second-order amplitudes in the auxiliary
space [see Eq. (45)]. The third term on the right-hand side of Eq. (42)
gives non-size-extensive contributions, which enter for first time at
fourth order,

z(1)µi (

2
∑

j=1
∑

νj
⟨HF∣Φ

∗T
∣νj⟩z(2)νj ) ≠ 0, p < i ≤ t, (48)

and have non-vanishing components only in the auxiliary space,
due to Eq. (44). The second- and third-order amplitudes, δt(2)µi
and δt(3)µi , can be obtained from Eq. (43) and become identical
to z(2)µi and z(3)µi , respectively, if the last non-size-extensive term
in Eq. (45) is neglected and the last non-size-extensive term in
Eq. (46) is replaced by the connected size-extensive contribution
−

1
2 ⟨µi∣[[Φ

∗T ,δT(1)],δT(1)]∣HF⟩.

C. The choice of auxiliary space for a CL state
Using the above observations, we see that the third right-hand

side term in Eq. (42) can first contribute to fifth-order primary-
space amplitudes, and therefore, the non-size-extensive contribu-
tions originating from this term can enter in the energy of Eq. (29)
in the sixth order. Similarly, non-size-extensive contributions orig-
inating from the last term in Eq. (42) enter in the energy at the
fourth order [cf. Eq. (46)]. If, however, we restrict the auxiliary
space to contain only one excitation level, the last term in Eq. (42)
vanishes

t
∑

j=1
∑

νj

∞
∑

r=p+1
∑

λr
⟨µi∣θνj ∣λr⟩⟨λr ∣Φ

∗T
∣HF⟩zνj = 0, for t = p + 1,

(49)

the second-order amplitudes z(2)µi then become identical to δt(2)µi , and
the third-order amplitudes z(3)µi become size-extensive, and there-
fore, non-size-extensive contributions first start to enter in sixth
order in the energy. We also note that auxiliary spaces contain-
ing more than one excitation level are computationally intractable,
since too much effort is then spent on optimizing amplitudes at the
highest excitation levels, which are computationally most demand-
ing, for amplitudes that are far from being converged at the lower

excitation levels. Unless otherwise specified, CL target states are in
the following restricted to contain only one excitation level in the
auxiliary space and non-size-extensive energy contributions there-
fore first enter in sixth order.

IV. CLUSTER PERTURBATION (CP) ENERGY
FROM THE ENERGY LAGRANGIAN SERIES

In Sec. II, we introduced CL target states, and in Sec. III, we
described how the amplitudes and the energy can be determined for
a CL target state. In addition, we described in Sec. III how a series of
CP energy corrections can be obtained for a CL target state. In this
section, we describe how the series of CP energy corrections can be
determined in a simpler manner using the energy Lagrangian20,21 for
the CL target state. In this way, we also pave the road for the deter-
mination of response functions for a CL target state, as this determi-
nation is simplified by employing an energy which is bi-variational
in the limit where the time-periodic perturbation operator vanishes.
To simplify the derivation in this section, we consider specifically the
CPSD(LT) model, for which the CC parent state is a CCSD state and
the effect of introducing triple excitations in the CP wave function is
described by a linear parametrization.

A. The energy Lagrangian for the CPSD(LT) model
For the CPSD(LT) model, we have p = 2 and t = 3, and the

energy Lagrangian can be written as

LCPSD(LT)(z, z) = ⟨HF∣e−ZH
∗T
0 eZ ∣HF⟩ +

3
∑

i=1
∑

µi
zµi

× ⟨µi∣e−ZH
∗T
0 eZ ∣HF⟩, (50)

where the amplitude equations [Eq. (24)] are added to the energy
[Eq. (23)] using undetermined Lagrangian multipliers, zµi . Substi-
tuting the energy [Eq. (23)] and amplitude equations [Eq. (30)] into
Eq. (50) gives

LCPSD(LT)(z, z) = ECCSD +
2
∑

i=1
∑

µi
⟨HF∣Φ

∗T
∣µi⟩zµi +

3
∑

i=1
∑

µi
zµi

×

⎛

⎝

3
∑

j=1
∑

νj
Aµiνjzνj + ⟨µi∣Φ

∗T
∣HF⟩δi3

− zµi(
2
∑

j=1
∑

νj
⟨HF∣Φ

∗T
∣νj⟩zνj)

⎞

⎠

, (51)

where we have used Eqs. (33) and that (38) and the last term in
Eq. (38) vanishes because the auxiliary space is restricted to contain
only one excitation level [cf. Sec. III C].

The Lagrangian LCPSD(LT)(z, z) is variational with respect to
the multipliers and amplitudes, giving the amplitude and multiplier
equations

∂LCPSD(LT)(z, z)
∂zµi

=

3
∑

j=1
∑

νj
Aµiνjzνj + ⟨µi∣Φ

∗T
∣HF⟩δi3

− zµi(
2
∑

j=1
∑

νj
⟨HF∣Φ

∗T
∣νj⟩zνj) = 0, i = 1, 2, 3,

(52)
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∂LCPSD(LT)(z, z)
∂zµi

= ⟨HF∣Φ
∗T

∣µi⟩(δi1 + δi2) +
3
∑

j=1
∑

νj
zνj

×

⎛

⎝

Aνjµi − δνjµi(
2
∑

q=1
∑

λq
⟨HF∣Φ

∗T
∣λq⟩zλq)

− zνj⟨HF∣Φ
∗T

∣µi⟩(δi1 + δi2)
⎞

⎠

= 0, i = 1, 2, 3.

(53)

B. Perturbative corrections to the energy Lagrangian
The amplitudes and multipliers of the target state can be deter-

mined by solving Eqs. (52) and (53), using perturbation theory with
the parent-state similarity-transformed fluctuation potential Φ

∗T as
the perturbation operator. To do this, we write Eqs. (52) and (53) in
the form

3
∑

j=1
∑

νj
Aµiνjzνj = −⟨µi∣Φ

∗T
∣HF⟩δi3 + zµi(

2
∑

j=1
∑

νj
⟨HF∣Φ

∗T
∣νj⟩zνj),

i = 1, 2, 3, (54)

3
∑

j=1
∑

νj
zνjAνjµi = − ⟨HF∣Φ

∗T
∣µi⟩(δi1 + δi2) + zµi

× (

2
∑

j=1
∑

νj
⟨HF∣Φ

∗T
∣νj⟩zνj) + (

3
∑

j=1
∑

νj
zνjzνj)

× ⟨HF∣Φ
∗T

∣µi⟩(δi1 + δi2), i = 1, 2, 3. (55)

In CP theory, the amplitude and multiplier corrections are
determined using the parent-state Jacobian partitioning of the
extended parent-state Jacobian. This partitioning is given in
Eqs. (39) and (40) and can for the CPSD(LT) model be written as

Aµiνj = A(0)µiνj + A(1)µiνj , i, j = 1, 2, 3, (56)

where

A(0)µiνj = ⟨µi∣[H
∗T
0 , θνj]∣HF⟩(δi1δj1 + δi1δj2 + δi2δj1 + δi2δj2)

+ ενjδµiνjδi3δj3, i, j = 1, 2, 3, (57a)

A(1)µiνj = ⟨µi∣[Φ
∗T , θνj]∣HF⟩(δi1δj3 + δi2δj3 + δi3δj1 + δi3δj2 + δi3δj3),

i, j = 1, 2, 3. (57b)

The singles-and-doubles component of the matrix A(0) is equal to
the parent-state CCSD Jacobian

JCCSD
µiνj = ⟨µi∣[H

∗T
0 , θνj]∣HF⟩, i, j = 1, 2. (58)

In the two-component form, the matrix A(0) can be written as

A(0) = (

JCCSD 0
0 εT

), (59)

where εT is a diagonal matrix containing orbital energy differences
in the triples space

(εT)µ3ν3 = εν3δµ3ν3 . (60)

The matrix A(1) contains only terms that are of first order in Φ
∗T .

Expanding the amplitudes and multipliers in orders of Φ
∗T ,

zµi = z(0)µi + z(1)µi + z(2)µi +⋯, (61)

zµi = z(0)µi + z(1)µi + z(2)µi +⋯, (62)

substituting Eqs. (57a) and (57b) into Eqs. (54) and (55), and using
Eq. (58), we obtain the kth order corrections for the amplitudes and
multipliers expressed in the two-component form

2
∑

j=1
∑

νj
JCCSD
µiνj z(k)νj = −∑

ν3

A(1)µiν3z
(k−1)
ν3

+
⎧
⎪⎪
⎨
⎪⎪
⎩

zµi(
2
∑

j=1
∑

νj
⟨HF∣Φ

∗T
∣νj⟩zνj)

⎫
⎪⎪
⎬
⎪⎪
⎭

{k}

, i = 1, 2,

(63a)

εµ3z
(k)
µ3 = − ⟨µ3∣Φ

∗T
∣HF⟩δk1 −

3
∑

j=1
∑

νj
A(1)µ3νjz

(k−1)
νj

+
⎧
⎪⎪
⎨
⎪⎪
⎩

zµ3(

2
∑

j=1
∑

νj
⟨HF∣Φ

∗T
∣νj⟩zνj)

⎫
⎪⎪
⎬
⎪⎪
⎭

{k}

, (63b)

2
∑

j=1
∑

νj
z(k)νj JCCSD

νjµi = − ⟨HF∣Φ
∗T

∣µi⟩δk1 −∑
ν3

z(k−1)
ν3 A(1)ν3µi

+
⎧
⎪⎪
⎨
⎪⎪
⎩

zµi(
2
∑

j=1
∑

νj
⟨HF∣Φ

∗T
∣νj⟩zνj)

+ (

3
∑

j=1
∑

νj
zνjzνj)⟨HF∣Φ

∗T
∣µi⟩

⎫
⎪⎪
⎬
⎪⎪
⎭

{k}

, i = 1, 2,

(64a)

z(k)µ3 εµ3 = −

3
∑

j=1
∑

νj
z(k−1)
νj A(1)νjµ3 +

⎧
⎪⎪
⎨
⎪⎪
⎩

zµ3(

2
∑

j=1
∑

νj
⟨HF∣Φ

∗T
∣νj⟩zνj)

⎫
⎪⎪
⎬
⎪⎪
⎭

{k}

,

(64b)

where we have used that the zeroth-order amplitudes and multipliers
vanish

z(0)µi = z(0)µi = 0, i = 1, 2, 3, (65)

and where { .}{k} denotes that from the whole expression in paren-
theses only terms of order k in Φ

∗T are retained.
The first-, second-, and third-order amplitudes can be obtained

from Eq. (63) as

z(1)µi = 0, i = 1, 2, (66a)

εµ3z
(1)
µ3 = −⟨µ3∣Φ

∗T
∣HF⟩, (66b)
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2
∑

j=1
∑

νj
JCCSD
µiνj z(2)νj = −∑

ν3

⟨µi∣[Φ
∗T , θν3]∣HF⟩z(1)ν3 , i = 1, 2, (67a)

εµ3z
(2)
µ3 = −∑

ν3

⟨µ3∣[Φ
∗T , θν3]∣HF⟩z(1)ν3 , (67b)

2
∑

j=1
∑

νj
JCCSD
µiνj z(3)νj = −∑

ν3

⟨µi∣[Φ
∗T , θν3]∣HF⟩z(2)ν3 , i = 1, 2, (68a)

εµ3z
(3)
µ3 = −

3
∑

j=1
∑

νj
⟨µ3∣[Φ

∗T , θνj]∣HF⟩z(2)νj , (68b)

where to obtain Eq. (68) we have used Eq. (66a).
Similarly, for the first- and second-order multipliers, we obtain

from Eq. (64)

2
∑

j=1
∑

νj
z(1)νj JCCSD

νjµi = −⟨HF∣Φ
∗T

∣µi⟩, i = 1, 2, (69a)

z(1)µ3 = 0, (69b)

2
∑

j=1
∑

νj
z(2)νj JCCSD

νjµi = −∑

ν3

z(1)ν3 ⟨ν3∣[Φ
∗T , θµi]∣HF⟩ = 0, i = 1, 2,

(70a)

εµ3z
(2)
µ3 = −

2
∑

j=1
∑

νj
z(1)νj ⟨νj∣[Φ

∗T , θµ3]∣HF⟩, (70b)

where to obtain the last equality in Eq. (70a) we have used Eq. (69b).
Equation (70a) implies that

z(2)µi = 0, i = 1, 2. (71)

The energy Lagrangian in Eq. (50) may be expanded in orders
of the perturbation

LCPSD(LT) = ∑
q=0

L(q)CPSD(LT). (72)

We now determine the energy corrections of the CPSD(LT) series
from Eq. (50) using the 2n + 1 rule for the amplitudes and the 2n + 2
rule for the multipliers (see, for example, Refs. 20–22). The energy
corrections through sixth order become

L(0)CPSD(LT) = ECCSD, (73)

L(1)CPSD(LT) = 0, (74)

L(2)CPSD(LT) = 0, (75)

L(3)CPSD(LT) =
2
∑

i=1
∑

µi
∑

ν3

z(1)µi ⟨µi∣[Φ
∗T , θν3]∣HF⟩z(1)ν3 , (76)

L(4)CPSD(LT) =
2
∑

i=1
∑

µi
∑

ν3

z(1)µi ⟨µi∣[Φ
∗T , θν3]∣HF⟩z(2)ν3 , (77)

L(5)CPSD(LT) = ∑
µ3

3
∑

j=1
∑

νj
z(2)µ3 ⟨µ3∣[Φ

∗T , θνj]∣HF⟩z(2)νj , (78)

L(6)CPSD(LT) =∑
µ3

3
∑

j=1
∑

νj
z(2)µ3 ⟨µ3∣[Φ

∗T , θνj]∣HF⟩z(3)νj

+ (∑

µ3

z(2)µ3 z(1)µ3 +
2
∑

i=1
∑

µi
z(1)µi z(2)µi )

2
∑

j=1
∑

νj
⟨HF∣Φ

∗T
∣νj⟩z(2)νj .

(79)

C. Comparison of energy corrections for the CPSD(LT)
and CPSD(T) models

We will now compare the lowest-order energy corrections for
the CPSD(LT) and CPSD(T) models. The energy series for the
CPSD(T) model was derived in Paper I.1 The lowest-order energy
and cluster amplitude corrections for the CPSD(T) series were deter-
mined in Paper I1 and are given in Appendixes A and B, respectively.
In Appendix B, ∗tCCSD is the solution to the CCSD parent-state
multiplier equation

⟨HF∣[H
∗T
0 , θνj]∣HF⟩ +

2
∑

i=1
∑

µi

∗tCCSD
µi JCCSD

µiνj = 0, j = 1, 2. (80)

To compare the lowest-order CPSD(LT) energy corrections
in Eqs. (73)–(79) with the CPSD(T) energy corrections given
in Appendix A, we first note that the CPSD(LT) amplitudes
z(1)µi , z(2)µi , z(3)µi in Eqs. (66)–(68) are identical to the corresponding
CPSD(T) amplitudes in Appendix B

z(q)µi = δt(q)µi , i = 1, 2, 3, q = 1, 2, 3. (81)

Comparing Eqs. (69a) and (80), we see that z(1)µi =
∗tCCSD
µi ,

i = 1, 2, and the multipliers in Eqs. (69) and (70) therefore may be
expressed as

z(1)µi =
∗tCCSD
µi , i = 1, 2, (82a)

z(1)µ3 = 0, (82b)

z(2)µi = 0, i = 1, 2, (83a)

εµ3z
(2)
µ3 = −⟨

∗tCCSD
∣[Φ

∗T , θµ3]∣HF⟩. (83b)

Comparing the CPSD(LT) and CPSD(T) energy series, we see
that both series have the CCSD energy as the zeroth-order energy
and that the first- and second-order corrections vanish. Using
Eqs. (80) and (81), the third- and fourth-order CPSD(LT) energy
corrections in Eqs. (76) and (77), respectively, may be written as

L(3)CPSD(LT) = ⟨
∗tCCSD

∣[Φ
∗T ,δT(1)]∣HF⟩, (84)

L(4)CPSD(LT) = ⟨
∗tCCSD

∣[Φ
∗T ,δT(2)3 ]∣HF⟩. (85)

These energy contributions are identical to the third- and fourth-
order CPSD(T) energy corrections in Appendix A. The fifth-order
CPSD(LT) energy correction in Eq. (78) becomes

L(5)CPSD(LT) = −∑
µ3

⟨
∗tCCSD

∣[Φ
∗T , θµ3]∣HF⟩ε−1

µ3 ⟨µ3∣[Φ
∗T ,δT(2)]∣HF⟩

= ⟨
∗tCCSD

∣[Φ
∗T ,δT(3)3 ]∣HF⟩, (86)
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where to obtain the first equality, we have used Eqs. (81) and
(83b) and to obtain the last equality, we have used Eq. (B3b) in
Appendix B. Compared to E(5)0 in Eq. (A6) in Appendix A, the last
two contributions in E(5)0 are absent in the expression for L(5)CPSD(LT).
The fifth-order term L(5)CPSD(LT) is size-extensive.

The sixth-order term in Eq. (79) contains a first term, L(6,ext)
CPSD(LT),

that is size-extensive and a second term, L(6,non−ext)
CPSD(LT) , that is not size-

extensive
L(6)CPSD(LT) = L(6,ext)

CPSD(LT) + L(6,non−ext)
CPSD(LT) . (87)

The size-extensive term may be expressed as

L(6,ext)
CPSD(LT) = − ∑

j=1,3
∑

µ3

⟨
∗tCCSD

∣[Φ
∗T , θµ3]∣HF⟩ε−1

µ3 ⟨µ3∣[Φ
∗T ,δT(3)]∣HF⟩.

(88)
The size-extensive term in Eq. (88) is a part of the first term of the
sixth-order energy E(6)0 in Eq. (A7) in Appendix A

⟨
∗tCCSD

∣[Φ
∗T ,δT(4)3 ]∣HF⟩ = −∑

µ3

⟨
∗tCCSD

∣[Φ
∗T , θµ3]∣HF⟩ε−1

µ3

× ⟨µ3∣[Φ
∗T ,δT(3)]∣HF⟩

−∑

µ3

⟨
∗tCCSD

∣[Φ
∗T , θµ3]∣HF⟩ε−1

µ3

× ⟨µ3∣[[Φ
∗T ,δT(1)],δT(2)]∣HF⟩.

(89)

The second term in Eq. (89) and the last three terms of E(6)0 in
Eq. (A7) in Appendix A are the terms that occur only in E(6)0 and are
replaced in L(6)CPSD(LT) by the non-size-extensive term

L(6,non−ext)
CPSD(LT) = (∑

µ3

z(2)µ3 z(1)µ3 +
2
∑

i=1
∑

µi
z(1)µi z(2)µi )

2
∑

j=1
∑

νj
⟨HF∣Φ

∗T
∣νj⟩z(2)νj .

(90)

Summarizing, the CPSD(LT) and CPSD(T) energy series are
identical through fourth order. In fifth order, the CPSD(LT) energy
contributions are included in the fifth-order CPSD(T) contribu-
tion that in addition contains two connected contributions. In sixth

order, the CPSD(LT) energy corrections L(6)CPSD(LT) contain a size-
extensive term, L(6,ext)

CPSD(LT), and a non-size-extensive term, L(6,non−ext)
CPSD(LT) .

The size-extensive term is contained in the sixth-order CPSD(T)
energy, E(6)0 , that in addition contains four connected contributions
that replace the non-size-extensive term, L(6,non−ext)

CPSD(LT) .

D. Numerical comparison of the accuracy
of the energy corrections for the CPSD(LT)
and CPSD(T) models

We now report calculations of the CPSD(LT) and CPSD(T)
energy series through sixth order, which allow us to compare the
attainable accuracy of the two series. Our test systems are the HF
molecule at three bond lengths using the aug-cc-pVTZ basis, the
CH2 molecule using the cc-pVTZ basis, and the N2 molecule using
the cc-pVTZ basis. The three bond distances for HF are chosen as Re,
1.5Re, and 2Re with Re = 0.91680 Å, the geometry of CH2 is chosen
as the equilibrium geometry given in Ref. 23, and the bond length
of N2 is the equilibrium bond length of 1.09768 Å. The calculations
employ the lowest closed-shell restricted Hartree-Fock determinant
as a reference state, so the reference state corresponds to the ground
state for HF and N2 and the lowest excited state for CH2. The 1s
core on atoms different from H is kept doubly occupied in all cal-
culations. The calculations were carried out using the tools of the
general coupled cluster codes24 as implemented in LUCIA.25

The HF molecule has been selected to examine the corrections
for a molecule containing an electron-rich atom, and the three bond
lengths allow us to examine the size of the corrections for a system
without static correlation at Re, a small degree of static correlation
at 1.5 Re, and a moderate degree of static correlation at 2 Re. The N2
molecule provides an example of a molecule without electron-rich
atoms and a triple bond, whereas the CH2 molecule is a molecule
without electron-rich atoms and a low-lying doubly excited state that
leads to a slow convergence.

For the CPSD(T) energy series, it is known from Paper I1 that
the lower odd-order corrections lead to significant improvements
of the ground-state energies, whereas the lower even-order correc-
tions lead only to marginal improvements for molecules containing
electron-rich atoms, including the fluorine atom. It is therefore gen-
erally advisable to use an odd order as the largest calculated order.
For that reason, we give in Table I the deviations of the CPSD(T)

TABLE I. Summary of the CPSD(T) and CPSD(LT) ground-state energy corrections (in Hartree) through fifth order.

HF at Re HF at 1.5 Re HF at 2 Re N2 CH2

Deviations compared to CCSDT energies (recovered percentage of the full triples correlation energy in parentheses)

E(3)0 , L(3)CPSD(LT) 0.000573 (92.4%) 0.000969 (91.2%) 0.001890 (88.6%) 0.001770 (90.3%) 0.001220 (78.3%)
E(4)0 , L(4)CPSD(LT) 0.000459 (93.9%) 0.000995 (90.9%) 0.001961 (88.1%) 0.001436 (92.1%) 0.000620 (89.0%)
E(5)0 0.000021 (99.7%) 0.000017 (99.8%) −0.000035 (100.2%) 0.000138 (99.2%) 0.000230 (95.9%)
L(5)CPSD(LT) 0.000019 (99.8%) 0.000012 (99.9%) −0.000067 (100.4%) 0.000128 (99.3%) 0.000229 (95.9%)

∆E(T) −0.007550 −0.010986 −0.016518 −0.018201 −0.005622
E(CCSDT) −100.349593 −100.260133 −100.175189 −109.373560 −39.062181
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TABLE II. Summary of the E(6)0 and L(6)CPSD(LT) ground-state energy corrections (in Hartree).

HF at Re HF at 1.5 Re HF at 2 Re N2 CH2

Deviations compared to CCSDT energies (recovered percentage of the full triples correlation energy in parentheses)

E(6)0 0.000043 (99.4%) 0.000151 (98.6%) 0.000369 (97.8%) 0.000134 (99.3%) 0.000124 (97.8%)

L(6)CPSD(LT) 0.000020 (99.7%) 0.000129 (99.4%) −0.000063 (100.4%) −0.000068 (100.4%) 0.000084 (98.5%)

Contributions to L(6)CPSD(LT) energy

L(6,ext)
CPSD(LT) 0.000021 0.000117 0.000259 −0.000050 −0.000121

L(6,non−ext)
CPSD(LT) −0.000019 −0.000060 −0.000255 −0.000146 −0.000024

Total 0.000001 0.000057 0.000004 −0.000196 −0.000145

and CPSD(LT) energies through order five, as compared to the
full CC singles-doubles-and-triples (CCSDT) energies, as well as
the recovered percentage of the full triples correlation energy. For
completeness, the full CCSDT energies and the full triple correla-
tion energy calculated as ∆E(T) = E(CCSDT) − E(CCSD) are also
given. Since the sixth-order energies are the first energy corrections
where the CPSD(LT) method gives a non-size-extensive contribu-
tion, we give these energies in Table II, although sixth-order meth-
ods, as even-order methods, are not expected to provide a useful
computational scheme, as discussed above.

Consider first the results for orders three and four (Table I), for
which the CPSD(T) and CPSD(LT) energy corrections are identical.
The third-order energies provide about 90% of the full triples cor-
relation energy for the three inter-nuclear distances of HF and N2,
whereas only about 80% is recovered for CH2. In absolute terms, the
deviation at third order is less than 0.001 hartree for HF at Re and
1.5 Re, whereas the deviation is between 0.001 and 0.002 Hartree for
the remaining three cases. For HF, the deviation increases by about
a factor of two when the bond length is increased by 0.5 Re. Going
from order three to four leads only to a significant improvement in
accuracy for CH2, where the fourth order correction gives a triples
correlation energy that is about 90% of the full triples correlation
energy.

The fifth-order CPSD(LT) energy correction is given by
Eq. (78). The correction is size-extensive, but includes only the first
of the three terms of the CPSD(T) energy correction in Eq. (A6)
of Appendix A. The fifth-order CPSD(T) energies were shown in
Paper I1 to be very accurate, and this is also observed for the calcu-
lations reported in Table I: the deviations from the CCSDT results
are 1% or less for all cases except CH2, where the deviation is about
4%. In absolute terms, the size of the deviations is less than 0.0001
Hartree for HF at the three distances, about 0.0001 Hartree for N2,
and about 0.0002 Hartree for CH2. It is worth seeing that the fifth-
order energies of the CPSD(LT) model give the same improvement
in accuracy as the CPSD(T) ones. As a matter of fact, the abso-
lute deviations from the CCSDT energies are slightly smaller for
the CPSD(LT) model. The size of the fifth-order energy L(5)CPSD(LT)
must therefore be much larger than the size of the two terms occur-
ring only in E(5)0 . Indeed, the size of L(5)CPSD(LT) is about two orders

of magnitude or more larger than the size of the two terms occur-
ring only in E(5)0 . With respect to the performance of the CPSD(LT)
method at fifth order, it is concluded that the accuracy of this
method equals that of the fifth-order CPSD(T) calculations for the
considered examples.

The sixth-order CPSD(LT) energy correction, L(6)CPSD(LT), is
given in Eqs. (79) and (87). The first term in Eq. (87), L(6,ext)

CPSD(LT),
is size-extensive and is also contained in the sixth-order CPSD(T)
energy, E(6)0 given in Eq. (A7), but the second, and non-size-
extensive, term, L(6,non−ext)

CPSD(LT) , is not a part of E(6)0 . From Table II,
it is noticed that including the sixth-order CPSD(T) or CPSD(LT)
energy corrections only gives a sizable reduction of the devia-
tion for CH2, where the deviations for both methods are reduced
from about 4% to about 2%. The CPSD(LT) energies through sixth
order are actually slightly closer to the full triples correction than
the CPSD(T) energies through sixth order. The size-extensive and
non-size-extensive sixth-order terms in CPSD(LT), L(6,ext)

CPSD(LT) and
L(6,non−ext)

CPSD(LT) , are given in Table II. For HF, the size-extensive terms
are positive and the non-size-extensive terms are negative, which
leads to cancellations in the sum of these terms. For N2 and CH2,
both terms are negative and their relative sizes vary. As the non-size-
extensive terms are significant already for the present calculations,
where only 6-10 electrons are correlated, it is obvious that the sixth-
order CPSD(LT) ground-state energies will not provide accurate
approximations for larger molecules.

V. RESPONSE FUNCTIONS FOR A CL TARGET STATE
In this section, we apply a time-periodic perturbation to a

molecular system described by a CL target state in order to deter-
mine the response functions for the target state. As the target
state is linearly parametrized, we also use a linear parametriza-
tion to describe the time evolution of the CL target state. The
response functions for the target state simplify if the time evolu-
tion is expressed in a basis, in which the energy is bi-variational.
This can be accomplished by introducing the bi-orthonormal basis
defined by the energy Lagrangian. In Subsection V A, we determine
this bi-orthonormal basis. Response function theory, as developed
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in Ref. 11, is then applied to determine the response functions for
the CL target state. Explicit expressions will be given for the linear,
quadratic, and cubic response functions.

A. Bi-variational energy Lagrangian for a CL
target state

To determine a bi-orthonormal basis in which the energy is bi-
variational, we introduce the energy Lagrangian for the energy and
amplitude equations in Eqs. (23) and (24)

L0(z, z) = ⟨HF∣e−ZH
∗T
0 eZ ∣HF⟩ +

t
∑

i=1
∑

µi
zµi⟨µi∣e

−ZH
∗T
0 eZ ∣HF⟩

= ⟨HF∣eZe−Ze−
∗TH0e

∗TeZe−Z ∣HF⟩, (91)

where

Z =

t
∑

i=1
∑

µi
zµi ∣HF⟩⟨µi∣. (92)

To obtain the last equality in Eq. (91), we have used that

⟨HF∣eZ = ⟨HF∣ +
t
∑

i=1
∑

µi
zµi⟨µi∣ (93)

and

e−Z ∣HF⟩ = ∣HF⟩. (94)

The energy Lagrangian in Eq. (91) is a generalized Hamiltonian
expectation value for the bi-orthonormal ket |CL⟩ and bra ⟨CL| state

∣CL⟩ = e
∗TeZe−Z ∣HF⟩, (95a)

⟨CL∣ = ⟨HF∣eZe−Ze−
∗T , (95b)

where the amplitudes and multipliers satisfy the variational condi-
tions

∂L0(z, z)
∂zµi

= ⟨µi∣e−Ze−
∗TH0e

∗TeZ ∣HF⟩ = 0, (96)

∂L0(z, z)
∂zµi

= ⟨HF∣[e−Ze−
∗TH0e

∗TeZ , ∣µi⟩⟨HF∣]∣HF⟩

+
t
∑

j=1
∑

νj
zνj⟨νj∣[e−Ze−

∗TH0e
∗TeZ , ∣µi⟩⟨HF∣]∣HF⟩ = 0.

(97)

The energy Lagrangian is bi-variational in the bi-orthonormal basis

∣B
∗TZZ

⟩ = {e
∗TeZe−Z ∣HF⟩, e

∗TeZe−Z ∣µi⟩}, i = 1, 2, . . . , t,

(98a)

⟨BZZ ∗T
∣ = {⟨HF∣eZe−Ze−

∗T , ⟨µi∣eZe−Ze−
∗T

}, i = 1, 2, . . . , t.

(98b)

To see this, consider the Hamiltonian matrix in the bi-orthonormal
basis in Eq. (98). The HF-HF component of the Hamiltonian matrix
is equal to the energy Lagrangian in Eq. (91), and the Hamilto-
nian interaction elements between the |CL⟩ ground state and its
orthogonal complement set of states vanish

⟨µi∣eZe−Ze−
∗TH0e

∗TeZe−Z ∣HF⟩ = 0, (99)

⟨HF∣eZe−Ze−
∗TH0e

∗TeZe−Z ∣µi⟩ = 0. (100)

To obtain Eqs. (99) and (100), the variational conditions in Eqs. (96)
and (97) must be used.

B. Response function theory for the time-evolving CL
target state

We now determine response functions for the |CL⟩ ground
state following the outline of Ref. 11. The time evolution of the |CL⟩
state is linearly expanded in the bi-orthonormal basis of Eq. (98),
in which the energy is bi-variational. We determine the linear,
quadratic, and cubic response functions and show that the response
functions have the same simple structure as the response functions
for a linearly parametrized variational CI state.11

1. The time-periodic Hamiltonian
and its eigenvalue equation

We consider a system described by a time-dependent bounded
Hermitian Hamiltonian H(t, �)11

H(t, �) = H0 + V(t, �), (101)

where H0 is the unperturbed time-independent Hamiltonian of
Eq. (22) and V(t, �) is a physical26 perturbation operator that is
Hermitian and periodic in time with a period T

V(t + T, �) = V(t, �). (102)

V(t, �) can be expanded in a sum over Fourier components

V(t, �) = ∑
j
Xj�Xj(ωXj) exp(−iωXj t), (103)

where Xj is a Hermitian time-independent operator and �Xj(ωXj)

is the associated perturbation strength for the real frequency ωXj . �
denotes a set of perturbation strengths �Xj(ωXj). It follows from the
Hermiticity of V(t, �) that the sum in Eq. (103) includes for each
term Xj�Xj(ωXj) exp(−iωXj t) also its adjoint X†

j �Xj(−ωXj) exp(iωXj t)
with

�Xj(−ωXj) = �∗Xj(ωXj). (104)

From the periodicity of V(t, �) [Eq. (102)], we can determine a
fundamental frequency ωT

ωT =
2π
T

(105)

such that the frequencies in Eq. (103) become integers multiplied on
the fundamental frequency

ωXj = nXjωT . (106)

We now consider the solution to the time-dependent
Schrödinger equation for the time-periodic Hamiltonian, H(t, �) of
Eq. (101),

H(t, �)∣̃0(t, �)⟩ = i
∂

∂t
∣̃0(t, �)⟩. (107)
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It has been shown in Ref. 11 that for the time-periodic Hamilto-
nian in Eq. (101), the time-dependent wave function, ∣̃0(t, �)⟩, can
be written in the phase-isolated form

∣̃0(t, �)⟩ = exp ( − i(E(�) t + FP0(t, �)))∣0R(t, �)⟩, (108)

where E(�) is a real time-independent eigenvalue (referred to as the
quasi-energy) of the steady-state time-dependent Schrödinger equa-
tion,11,27 FP0(t, �) is a real time-periodic phase, and |0R(t, �)⟩ is a
unit-normalized time-periodic regular wave function that can be
written as

∣0R(t, �)⟩ = N(t, �)∣0I(t, �)⟩, (109)
where N(t, �) is a time-periodic real normalization constant

N(t, �) = ⟨0I(t, �)∣0I(t, �)⟩
−1/2, (110)

and where |0I(t, �)⟩ is time-periodic and intermediate-normalized
against a bra reference state. We will determine response functions
for the state |CL⟩ of Eq. (95a), using a linear parametrization of the
time evolution of this CL state. Identifying the |CL(t)⟩ state with the
intermediate-normalized state |0I(t, �)⟩ of Eq. (109) and expanding
|CL(t)⟩ linearly in the ket component of the bi-orthonormal basis of
Eqs. (98), we obtain

∣0I(t, �)⟩ = ∣CL(t)⟩ = e
∗TeZe−Z ∣HF⟩ +∑

µk
cµk(t, �)e

∗TeZe−Z ∣µk⟩

= e
∗TeZe−ZeC(t,�)∣HF⟩, (111)

where the operator

C(t, �) = ∑
µk

∣µk⟩⟨HF∣cµk(t, �) (112)

vanishes in the limit of no perturbation and where the time-evolving
state in Eq. (111) is intermediate normalized against the unperturbed
bra ground state of Eq. (95b) [the first component of the bra basis in
Eq. (98b)]

⟨CL∣0I(t, �)⟩ = 1. (113)
In the limit of no perturbation, |0I(t, �)⟩ therefore satisfies

lim
�→0

∣0I(t, �)⟩ = ∣CL⟩ = e
∗TeZe−Z ∣HF⟩. (114)

2. Solution to the time-dependent eigenvalue
equation for the CL target state via projection

Substituting Eqs. (108), (109) and (111) into the time-
dependent Schrödinger equation in Eq. (107), we obtain the time-
dependent eigenvalue equation

⎛

⎝

H(t, �) − i
∂

∂t
− ḞP0(t, �) − (i

d
dt

lnN(t, �))
⎞

⎠

e
∗TeZe−ZeC(t,�)∣HF⟩

= E(�)e
∗TeZe−ZeC(t,�)∣HF⟩, (115)

which is satisfied at each time. Solving the eigenvalue equation in
Eq. (115) is equivalent to solving the time-dependent Schrödinger
equation in Eq. (107) (see Ref. 11).

Multiplying Eq. (115) by e−C(t,�)eZe−Ze−
∗T on the left, the time-

dependent Schrödinger equation can be written as

e−C(t,�)eZe−Ze−
∗T⎛

⎝

H(t, �) − i
∂

∂t
− ḞP0(t, �) − (i

d
dt

lnN(t, �))
⎞

⎠

× e
∗TeZe−ZeC(t,�)∣HF⟩ = E(�)∣HF⟩. (116)

The time-dependent Schrödinger equation in Eq. (116) can be solved
by projection against the basis ⟨B∣ [cf. Eq. (5)] in the composite
Hilbert space,27 giving (see Sec. IV B of Ref. 11 for the detailed route
of derivation)

E(�)=Re
⎧
⎪⎪
⎨
⎪⎪
⎩

⟨HF∣e−C(t,�)
⎛

⎝

eZe−ZH
∗T

(t, �)eZe−Z − i
∂

∂t
⎞

⎠

eC(t,�)∣HF⟩
⎫
⎪⎪
⎬
⎪⎪
⎭T

,

(117)

⎧
⎪⎪
⎨
⎪⎪
⎩

⟨µk∣e
−C(t,�)⎛

⎝

eZe−ZH
∗T

(t, �)eZe−Z − i
∂

∂t
⎞

⎠

eC(t,�)∣HF⟩
⎫
⎪⎪
⎬
⎪⎪
⎭T

= 0,

(118)

where the similarity-transformed perturbed Hamiltonian, H
∗T

(t, �),
is defined analogously to Eq. (25) and where {⋅}T denotes a time aver-
age over the period T. To obtain Eqs. (117) and (118), we have used
that the operator e

∗TeZe−Z is time-independent. Equations (117) and
(118) show that the quasi-energy and the time-dependent ampli-
tudes are independent of the normalization constant, N(t, �), and
of the real time-periodic phase, FP0(t, �).

Comparing Eqs. (91) and (99) for the unperturbed system
with Eqs. (117) and (118) for the perturbed system, we see that
Eqs. (117) and (118) describe a time-dependent generalization of
Eqs. (91) and (99) where the Hamiltonian is replaced by the time-
dependent Hamiltonian and where the Hilbert space is extended
with a time-dependent component.

The quasi-energy can be determined by solving Eq. (118)
for the amplitudes, cµk(t, �), and substituting these amplitudes in
Eq. (117). However, to get variational flexibility, which simplifies
the determination of molecular response functions, we introduce
the Lagrangian,20 where the amplitude equations are added as a
constraint to the quasi-energy using time-dependent undetermined
Lagrangian multipliers. As the Hamiltonian, H(t, �) [Eq. (101)],
is time-periodic, this is most conveniently done in the frequency
domain. The amplitudes in the time domain, cµk(t, �), can in the
frequency domain be expressed as11,16

cµk(t, �) = ∑
K
cµk(ωK)e−iωK t , (119)

where cµk(ωK) are the frequency-dependent amplitudes that can be
expanded in the perturbation strength as11,16

cµk(ωK) =
∞
∑

n=1

1
n! ∑j1⋯jn

cXj1⋯Xjn
µk (ωXj1

, . . . ,ωXjn )[

n
∏

m=1
�Xjm (ωXjm)]

× ∆(
n
∑

m=1
ωXjm − ωK), (120)
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where cXj1⋯Xjn
µk (ωXj1

, . . . ,ωXjn) is a derivative of the amplitude
cµk(t, �) with respect to the perturbation strengths, taken at zeroth
perturbation strengths,

cXj1⋯Xjn
µk (ωXj1

, . . . ,ωXjn) =
dncµk(t, �)

d�Xj1
(ωXj1

)⋯d�Xjn (ωXjn )
∣

�=0
, (121)

and

∆(x) = {

0, x ≠ 0
1, x = 0.

(122)

Equations (120) and (122) show that the frequency-dependent
amplitudes, cµk(ωK), are only non-vanishing when ωK is equal
to a sum of the physical perturbation frequencies of Eq. (103).
Furthermore, in the limit of no physical perturbation, where
all the perturbation strengths and frequencies of Eq. (103) are
set to zero, the time-dependent amplitudes cµk(t, �) [Eq. (119)]
vanish.

Adding the amplitude equation as a constraint to the quasi-
energy in terms of time-dependent Lagrangian multipliers, cµk(t, �),
and transforming to the frequency domain, we obtain the complex
quasi-energy Lagrangian11

cL =

⎧
⎪⎪
⎨
⎪⎪
⎩

⟨HF∣e−C(t,�)
⎛

⎝

eZe−ZH
∗T

(t, �)eZe−Z − i
∂

∂t
⎞

⎠

eC(t,�)∣HF⟩
⎫
⎪⎪
⎬
⎪⎪
⎭T

+∑
µkK

cµk(ωK)

⎧
⎪⎪
⎨
⎪⎪
⎩

⟨µk∣e
−C(t,�)⎛

⎝

eZe−ZH
∗T

(t, �)eZe−Z − i
∂

∂t
⎞

⎠

× eC(t,�)∣HF⟩e−iωK t
⎫
⎪⎪
⎬
⎪⎪
⎭

, (123)

where cµk(ωK) are frequency-dependent multipliers, which
can be expanded as in Eq. (120). To obtain Eq. (123), we have
used that the imaginary part of
{⟨HF∣eC(t,�)(eZe−ZH

∗T
(t, �)eZe−Z − i ∂

∂t )e−C(t,�)∣HF⟩}
T

vanishes.11

We refer to Ref. 11, where details concerning the derivation of
Eq. (123) can be found.

It has been shown in Ref. 11 (Secs. IV C and IV D therein) that
solving the eigenvalue equation for the intermediate-normalized ket
state [Eq. (115)] via projection in the frequency domain is equivalent
to determining stationary points of the quasi-energy Lagrangian cL
in Eq. (123)

∂ cL
∂cµk(ωK)

= 0, (124)

∂ cL
∂cµk(ωK)

= 0. (125)

The frequency-dependent multipliers, cµk(ωK), and amplitudes,
cµk(ωK), can be determined from Eqs. (124) and (125), respec-
tively, and the unperturbed multipliers, zµk , and amplitudes, zµk ,
from Eqs. (97) and (96), respectively. In the limit of no perturba-
tion, where all frequencies and perturbation strengths of Eq. (103)
are set to zero and hence cµk(ωK) and cµk(ωK) vanish, the quasi-
energy Lagrangian, cL [Eq. (123)], recovers the Lagrangian for the
unperturbed system, L0(z, z) [Eq. (91)].

3. Response functions for the CL target ground state
Following the development of Ref. 11, molecular response

properties can be obtained by differentiating the quasi-energy
Lagrangian, cL [Eq. (123)], with respect to the perturbation
strengths. The nth-order molecular response property can then be
expressed as11

⟨⟨Xj1 ;Xj2 , . . . ,Xjn⟩⟩ωXj2
,...,ωXjn

=
1
2
C±ω cLXj1⋯Xjn (ωXj1

,⋯,ωXjn
),

n
∑

m=1
ωXjm = 0, (126)

where the perturbation components of the quasi-energy Lagrangian
are defined as derivatives of cL with respect to perturbation
strengths

cLXj1⋯Xjn
(ωXj1

,⋯,ωXjn) =
dn cL

d�Xj1
(ωXj1

) . . .d�Xjn (ωXjn )
∣

�=0
, (127)

and where C±ω is the complex conjugation and frequency sign
inversion operator

C±ω cLXj1⋯Xjn
(ωXj1

,⋯,ωXjn) =
cLXj1⋯Xjn

(ωXj1
,⋯,ωXjn)

+ cLXj1⋯Xjn
∗
(−ωXj1

,⋯,−ωXjn). (128)

4. The Jacobian for the CL target ground state
The Jacobian plays a central role in response function the-

ory as its eigenvalues occur at the excitation energies of the
unperturbed molecular system.11 Furthermore, the inverse of the
Jacobian enters in the response amplitudes (and multipliers)
and the Jacobian thereby determines the pole structure of the
response functions.15,16 The Jacobian is defined as the derivative of
the quasi-energy Lagrangian with respect to frequency-dependent
amplitudes and multipliers taken at the zeroth perturbation
strengths

Jµkνm =
∂2 cL

∂cµk(ωK)∂cνm(ωM)

∣

�=0

= ⟨µk∣[eZe−ZH
∗T
0 eZe−Z , ∣νm⟩⟨HF∣]∣HF⟩. (129)

To obtain the second equality in Eq. (129), we have used Eqs. (112),
(119), and (123), and that the frequencies are zero at the zeroth
perturbation strength.

C. The quasi-energy Lagrangian for the CL target
ground-state

In this section, we simplify the quasi-energy Lagrangian for the
time-evolving ket state, cL [Eq. (123)], to a form that is convenient
for deriving response functions. First, in Sec. V C 1, we perform a
BCH expansion of the Lagrangian in the time domain and show that
the expansion terminates after the double commutator term. Next,
the bi-variational conditions for the unperturbed system [Eqs. (99)
and (100)] are used to simplify the Lagrangian, and finally, further
simplifications are obtained in Sec. V C 2 by using Eqs. (119)–(122)
to transform the Lagrangian to the frequency domain. The flow of
derivation in this subsection is similar to the one in Sec. V of Ref. 11.
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1. Quasi-energy Lagrangian in the time domain
Substituting Eqs. (101) and (103) into Eq. (123), we can write

the quasi-energy Lagrangian in the form

cL =
cLH0 + cLF +∑

j1

cLXj1 �Xj1
(ωXj1

), (130)

where

cLH0 = {⟨HF∣e−C(t,�)eZe−ZH
∗T
0 eZe−ZeC(t,�)∣HF⟩}

T
+∑
µkK

cµk(ωK)

× {⟨µk∣e
−C(t,�)eZe−ZH

∗T
0 eZe−ZeC(t,�)∣HF⟩e−iωK t

}

T
, (131)

cLXj1 =

⎧
⎪⎪
⎨
⎪⎪
⎩

⟨HF∣e−C(t,�)eZe−ZX
∗T
j1 eZe−ZeC(t,�)∣HF⟩e−iωXj1

t
⎫
⎪⎪
⎬
⎪⎪
⎭T

+∑
µkK

cµk(ωK)

⎧
⎪⎪
⎨
⎪⎪
⎩

⟨µk∣e
−C(t,�)eZe−ZX

∗T
j1 eZe−ZeC(t,�)∣HF⟩

× e−i(ωK+ωXj1
)t
⎫
⎪⎪
⎬
⎪⎪
⎭T

, (132)

and

cLF = −i∑
µkK

cµk(ωK){⟨µk∣e
−C(t,�) ∂

∂t
eC(t,�)∣HF⟩e−iωK t

}

T
. (133)

To obtain Eq. (133), we have used that

∂

∂t
eC(t,�) = eC(t,�)∑

µk
ċµk(t, �)∣µk⟩⟨HF∣ (134)

and therefore {⟨HF∣e−C(t,�) ∂
∂t e

C(t,�)
∣HF⟩}

T
vanishes.

In the following, we will carry out BCH expansions with respect
to C(t, �) for the individual terms of cL in Eq. (130). To simplify the
expansion, we note that the double commutator of C(t, �) [Eq. (112)]
with an arbitrary operator O becomes

[[O,C(t, �)],C(t, �)]

= ∑

µkνm
[[O, ∣µk⟩⟨HF∣], ∣νm⟩⟨HF∣]cµk(t, �)cνm(t, �)

= − ∑

µkνm

⎛

⎝

∣µk⟩⟨HF∣O∣νm⟩⟨HF∣ + ∣νm⟩⟨HF∣O∣µk⟩⟨HF∣
⎞

⎠

× cµk(t, �)cνm(t, �)
= −2 ∑

µkνm
∣µk⟩⟨HF∣O∣νm⟩⟨HF∣cµk(t, �)cνm(t, �). (135)

Equation (135) simplifies the double commutator term in the BCH
expansion of e−C(t ,�)OeC(t ,�) and further implies that the triple,
quadruple, and higher commutator terms in this expansion vanish.

Applying initially the BCH expansion to the cLH0 term in
Eq. (131), we obtain

cLH0 =
cLL

H0 + cLNL
H0 , (136)

where cLL
H0 denotes the terms that are constant or linear in the

cµk(t, �) amplitudes, and cLNL
H0 denotes the terms that are non-linear

in these amplitudes. The linear term becomes

cLL
H0 = ⟨HF∣eZe−ZH

∗T
0 eZe−Z ∣HF⟩

+ {⟨HF∣[eZe−ZH
∗T
0 eZe−Z ,C(t, �)]∣HF⟩}

T

+∑
µkK

cµk(ωK){⟨µk∣e
Ze−ZH

∗T
0 eZe−Z ∣HF⟩e−iωK t

}

T

+∑
µkK

cµk(ωK){⟨µk∣[eZe−ZH
∗T
0 eZe−Z ,C(t, �)]∣HF⟩e−iωK t

}

T
.

(137)

For the non-linear term, we recall that the BCH expansion termi-
nates after the double commutator, giving

cLNL
H0 =

1
2
{⟨HF∣[[eZe−ZH

∗T
0 eZe−Z ,C(t, �)],C(t, �)]∣HF⟩}

T

+
1
2 ∑µkK

cµk(ωK){⟨µk∣[[eZe−ZH
∗T
0 eZe−Z ,C(t, �)],C(t, �)]

× ∣HF⟩e−iωK t
}

T

= − ∑

µkνmK
cµk(ωK)⟨HF∣eZe−ZH

∗T
0 eZe−Z ∣νm⟩

× {cµk(t, �)cνm(t, �)e−iωK t
}

T
, (138)

where to obtain the last equality we have used Eq. (135). The cLL
H0

term of Eq. (137) and the cLNL
H0 term of Eq. (138) can be simplified

using the bi-variational conditions of Eqs. (99) and (100) which are
satisfied for the unperturbed system. Using the variational condition
in Eq. (99), the third term in Eq. (137) vanishes and we obtain

cLL
H0 = L0 + {⟨HF∣[eZe−ZH

∗T
0 eZe−Z ,C(t, �)]∣HF⟩}

T

+ ∑
µkK

cµk(ωK){⟨µk∣[eZe−ZH
∗T
0 eZe−Z ,C(t, �)]

× ∣HF⟩e−iωK t
}

T
, (139)

where we have introduced L0 of Eq. (91). Substituting Eq. (112) into
Eq. (139), we further obtain that

cLL
H0 = L0 +∑

νm
{⟨HF∣[eZe−ZH

∗T
0 eZe−Z , ∣νm⟩⟨HF∣]∣HF⟩cνm(t, �)}

T

+ ∑
µkνmK

cµk(ωK){⟨µk∣[eZe−ZH
∗T
0 eZe−Z , ∣νm⟩⟨HF∣]

× ∣HF⟩cνm(t, �)e−iωK t
}

T
. (140)
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The second term in Eq. (140) vanishes by the variational condition
in Eq. (100) for the unperturbed system, giving

cLL
H0 = L0 + ∑

µkνmK
cµk(ωK)⟨µk∣[eZe−ZH

∗T
0 eZe−Z , ∣νm⟩⟨HF∣]∣HF⟩

× {cνm(t, �)e−iωK t
}

T
. (141)

Substituting the definition of the Jacobian [Eq. (129)] into Eq. (141),
we obtain

cLL
H0 = L0 + ∑

µkνmK
cµk(ωK)Jµkνm{cνm(t, �)e−iωK t

}

T
. (142)

We now turn to the non-linear term, cLNL
H0 , of Eq. (138). Using

the variational condition in Eq. (100), we obtain that cLNL
H0 vanishes

cLNL
H0 = 0. (143)

For the cLXj1 term [Eq. (132)], we apply the BCH expansion
and use Eq. (135), giving

cLXj1 = ⟨HF∣eZe−ZX
∗T
j1 eZe−Z ∣HF⟩{e−iωXj1

t
}

T
+∑

νm
⟨HF∣[eZe−ZX

∗T
j1 eZe−Z , ∣νm⟩⟨HF∣]∣HF⟩{cνm(t, �)e−iωXj1

t
}

T

+∑
µkK

cµk(ωK)⟨µk∣e
Ze−ZX

∗T
j1 eZe−Z ∣HF⟩{e−i(ωXj1

+ωK)t
}

T
+ ∑
µkνmK

cµk(ωK)⟨µk∣[eZe−ZX
∗T
j1 eZe−Z , ∣νm⟩⟨HF∣]∣HF⟩

× {cνm(t, �)e−i(ωXj1
+ωK)t

}

T
− ∑

µkνmK
cµk(ωK)⟨HF∣eZe−ZX

∗T
j1 eZe−Z ∣νm⟩{cµk(t, �)cνm(t, �)e−i(ωXj1

+ωK)t
}

T
. (144)

The cLF term can be simplified substituting Eq. (134) into Eq. (133)

cLF = −i∑
µkK

cµk(ωK){ċµk(t, �)e−iωK t
}T . (145)

2. Quasi-energy Lagrangian in the frequency domain
In this section, we transform the quasi-energy Lagrangian,

derived in Sec. V C 1, to the frequency domain. To do this, we use
the relation derived in Ref. 11

{e−i[(∑K∈Γ1
ωK−∑L∈Γ2

ωL)+(∑m∈Γ3
ωXjm

−∑n∈Γ4
ωXjn

)]t
}

T

= ∆
⎛

⎝

( ∑

K∈Γ1

ωK − ∑
L∈Γ2

ωL) + ( ∑

m∈Γ3

ωXjm − ∑

n∈Γ4

ωXjn )
⎞

⎠

, (146)

where ∆(x) has been defined in Eq. (122) and where Γ1, Γ2, Γ3, and
Γ4 are sets of frequency indices. We also use Eq. (119) for cµk(t, �)
amplitudes,

cµk(t, �) = ∑
K
cµk(ωK)e−iωK t , (147)

and its time derivative,

ċµk(t, �) = −i∑
K
ωKcµk(ωK)e−iωK t . (148)

Substituting Eq. (147) into cLL
H0 of Eq. (142), we obtain

cLL
H0 = L0 + ∑

µkνmKM
cµk(ωK)Jµkνmcνm(ωM){e−i(ωK+ωM)t

}

T
. (149)

By applying Eq. (146), the explicit time dependence in Eq. (149) is
removed, giving cLL

H0 in the frequency domain

cLL
H0 = L0 + ∑

µkνmKM
cµk(ωK)Jµkνmcνm(ωM)∆(ωK + ωM). (150)

To obtain cLF in the frequency domain, we substitute Eq. (148) into
Eq. (145) and apply Eq. (146), giving

cLF = − ∑
µkKM

ωMcµk(ωK)cµk(ωM)∆(ωK + ωM). (151)

For further convenience in the derivation of response functions, we
combine cLF with cLL

H0 in

cLH =
cLL

H0 + cLF = L0 + ∑

µkνmKM
cµk(ωK)

⎛

⎝

Jµkνm − ωMδµkνm
⎞

⎠

× cνm(ωM)∆(ωK + ωM). (152)

Applying the same technique as for deriving Eq. (150), we transform
the cLXj1 term of Eq. (144) to the frequency domain, giving
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cLXj1 = ⟨HF∣eZe−ZX
∗T
j1 eZe−Z ∣HF⟩∆(ωXj1

) + ∑
νmM

⟨HF∣eZe−ZX
∗T
j1 eZe−Z ∣νm⟩cνm(ωM)∆(ωXj1

+ ωM)

+∑
µkK

cµk(ωK)⟨µk∣e
Ze−ZX

∗T
j1 eZe−Z ∣HF⟩∆(ωXj1

+ ωK)

+ ∑

µkνmKM
cµk(ωK)⟨µk∣[eZe−ZX

∗T
j1 eZe−Z , ∣νm⟩⟨HF∣]∣HF⟩cνm(ωM)∆(ωXj1

+ ωK + ωM)

− ∑

KLM

⎛

⎝
∑

µk
cµk(ωK)cµk(ωL)

⎞

⎠

⎛

⎝
∑

νm
⟨HF∣eZe−ZX

∗T
j1 eZe−Z ∣νm⟩cνm(ωM)

⎞

⎠

∆(ωXj1
+ ωK + ωL + ωM). (153)

Summarizing, the quasi-energy Lagrangian in the frequency
domain can be expressed as [cf. Eq. (130)]

cL =
cLH +∑

j1

cLXj1 �Xj1
(ωXj1

), (154)

where cLH is given in Eq. (152) and cLXj1 is given in Eq. (153).

D. Response functions for the CL target state
In this section, we show how molecular response property

expressions can be derived for the time-evolving state |CL(t)⟩ of
Eq. (111), using the quasi-energy Lagrangian derived in Sec. V C.
We start in Sec. V D 1 with a brief summary outlining the strategy
that we have developed in Ref. 11 for the derivation of the response
functions. We then apply this strategy in Secs. V D 2–V D 5 to deter-
mine the first- through fourth-order molecular response property
expressions for the time-evolving state |CL(t)⟩.

1. Outline for deriving response functions
It follows from Eq. (126) that response functions can be deter-

mined once cLXj1⋯Xjn
(ωXj1

,⋯,ωXjn) of Eq. (127) has been deter-
mined. cLXj1⋯Xjn

(ωXj1
,⋯,ωXjn) can be written as (see Sec. IV E of

Ref. 11 for details of the derivation)

cLXj1⋯Xjn
(ωXj1

,⋯,ωXjn) = PXj1⋯Xjn
ωXj1

⋯ωXjn
fXj1⋯Xjn
ωXj1

⋯ωXjn
,

n
∑

m=1
ωXjm = 0, (155)

where the permutation operator PXj1⋯Xjn
ωXj1

⋯ωXjn
generates n! (distinct

and non-distinct) permutations of the operator–frequency pairs
(Xjk ,ωXjk

), where the operators and the corresponding frequen-
cies are simultaneously permuted, and fXj1⋯Xjn

ωXj1
⋯ωXjn

is an nth-order
contribution to Eq. (154) that is permutation-distinct with respect
to the operator–frequency pairs. We have shown in Ref. 11 how
fXj1⋯Xjn
ωXj1

⋯ωXjn
can be identified by substituting the expansion of cµk(ωK)

[Eq. (120)] and a similar expansion of cµk(ωK) into cLH [Eq. (152)]
and cLXj1 [Eq. (153)], and collecting terms of the same order in
the physical perturbation. While carrying out this substitution,
the summation over the upper-case indices (K, L, M, . . .) is per-
formed explicitly in Eqs. (152) and (153) such that ∆(x) of Eq. (122)
gives only the contributions that satisfy the frequency constraint in
Eq. (126).11

We have further shown in Sec. IV E 2 of Ref. 11 that
the stationary conditions of Eqs. (124) and (125) imply that
cLXj1⋯Xjn

(ωXj1
,⋯,ωXjn) [Eq. (127)] is stationary with respect to

cXj1⋯Xjn
µk (ωXj1

, . . . ,ωXjn ) and cXj1⋯Xjn
µk (ωXj1

, . . . ,ωXjn )

∂ cLXj1⋯Xjn
(ωXj1

,⋯,ωXjn)

∂cXj1⋯Xjm
µk (ωXj1

,⋯,ωXjm)

= 0,
n
∑

q=1
ωXjq = 0, (156)

∂ cLXj1⋯Xjn
(ωXj1

,⋯,ωXjn)

∂cXj1⋯Xjm
µk (ωXj1

,⋯,ωXjm)

= 0,
n
∑

q=1
ωXjq = 0. (157)

Equations (156) and (157) can be used to obtain response equations
that determine the Lagrangian multipliers cXj1⋯Xjm

µk (ωXj1
,⋯,ωXjm)

and the amplitudes cXj1⋯Xjm
µk (ωXj1

,⋯,ωXjm), respectively.
Summarizing, cLXj1⋯Xjn

(ωXj1
,⋯,ωXjn) can be identified using

Eq. (155). Next, response equations can be obtained by differentiat-
ing cLXj1⋯Xjn

(ωXj1
,⋯,ωXjn) with respect to cXj1⋯Xjm

µk (ωXj1
, . . . ,ωXjm )

and cXj1⋯Xjm
µk (ωXj1

, . . . ,ωXjm ) [Eqs. (156) and (157)]. The response
equations can then be used to obtain a simplified expression for
cLXj1⋯Xjn

(ωXj1
,⋯,ωXjn), which can be inserted into Eq. (126) giving

the response functions. In the following, we use the outline described
in this section to derive first- through fourth-order molecular prop-
erty expressions.

2. First-order molecular properties
We initially identify the first-order28 component of the

Lagrangian, cL [Eq. (154)], as

cLXj1 (ωXj1
) = ⟨HF∣eZe−ZX

∗T
j1 eZe−Z ∣HF⟩, ωXj1

= 0, (158)

where we have used that cνm(ωM) and cνm(ωM) do not have a
zeroth-order contribution [cf. Eq. (120)]. Substituting Eq. (158) into
Eq. (126), we obtain the first-order molecular property expression
for the time-evolving CL state of Eq. (111)

⟨⟨Xj1⟩⟩0 =
1
2
C±ω⟨HF∣eZe−ZX

∗T
j1 eZe−Z ∣HF⟩, (159)

where the zeroth-order amplitudes, zµk , and multipliers, zµk , are
obtained by solving Eqs. (96) and (97), respectively.
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3. Second-order molecular properties
The second-order Lagrangian can be identified as

cLXj1Xj2 (ωXj1
,ωXj2

)

= PXj1Xj2
ωXj1ωXj2

⎛

⎝
∑

µkνm
cXj1
µk (ωXj1

)(Jµkνm − ωXj2
δµkνm)c

Xj2
νm (ωXj2

)

+∑
νm

⟨HF∣eZe−ZX
∗T
j1 eZe−Z ∣νm⟩c

Xj2
νm (ωXj2

)

+∑
µk

cXj2
µk (ωXj2

)⟨µk∣e
Ze−ZX

∗T
j1 eZe−Z ∣HF⟩

⎞

⎠

, ωXj1
+ ωXj2

= 0.

(160)

Applying the stationary condition of Eq. (157) to cLXj1Xj2 (ωXj1
,ωXj2

)

of Eq. (160),

∂cLXj1Xj2 (ωXj1
,ωXj2

)

∂cXj2
µk (ωXj2

)

= 0, (161)

gives

∑

νm
(Jµkνm − ωXj1

δµkνm)c
Xj1
νm (ωXj1

) + ⟨µk∣e
Ze−ZX

∗T
j1 eZe−Z ∣HF⟩ = 0.

(162)

Equation (162) is the first-order response equation for the first-order
amplitudes cXj1

νm (ωXj1
). Similarly, applying the stationary condition of

Eq. (156) gives the response equation for the first-order multipliers
cXj1
νm (ωXj1

),

∑

µk
cXj1
µk (ωXj1

)(Jµkνm + ωXj1
δµkνm) + ⟨HF∣eZe−ZX

∗T
j1 eZe−Z ∣νm⟩ = 0,

(163)

where for the first term we have used the frequency constraint,
ωXj1

+ ωXj2
= 0.

Using the 2n + 1 rule for the amplitudes and the 2n + 2 rule for
the multipliers (see, for example, Refs. 20–22), the linear response
function becomes

⟨⟨Xj1 ;Xj2⟩⟩ωXj2

=
1
2
C±ωPXj1 Xj2

ωXj1
ωXj2
∑

νm
⟨HF∣eZe−ZX

∗T
j1 eZe−Z ∣νm⟩

× cXj2
νm (ωXj2

), ωXj1
+ ωXj2

= 0, (164)

where cXj2
νm (ωXj2

) amplitudes are obtained from Eq. (162).

4. Third-order molecular properties
Third-order molecular properties can be determined from

the quadratic response function. To determine the quadratic
response function, we initially identify the third-order quasi-energy
Lagrangian

cLXj1Xj2Xj3 (ωXj1
,ωXj2

,ωXj3
) = PXj1 Xj2 Xj3

ωXj1
ωXj2

ωXj3

⎛

⎝
∑

µkνm
cXj1Xj2
µk (ωXj1

,ωXj2
)(Jµkνm − ωXj3

δµkνm)c
Xj3
νm (ωXj3

)

+ ∑
µkνm

cXj1
µk (ωXj1

)(Jµkνm − (ωXj2
+ ωXj3

)δµkνm)c
Xj2Xj3
νm (ωXj2

,ωXj3
) +∑

νm
⟨HF∣eZe−ZX

∗T
j1 eZe−Z ∣νm⟩c

Xj2Xj3
νm (ωXj2

,ωXj3
)

+∑
µk

cXj2Xj3
µk (ωXj2

,ωXj3
)⟨µk∣e

Ze−ZX
∗T
j1 eZe−Z ∣HF⟩ + ∑

µkνm
cXj2
µk (ωXj2

)⟨µk∣[eZe−ZX
∗T
j1 eZe−Z , ∣νm⟩⟨HF∣]∣HF⟩cXj3

νm (ωXj3
)

⎞

⎠

,

ωXj1
+ ωXj2

+ ωXj3
= 0. (165)

Differentiating cLXj1Xj2Xj3 (ωXj1
,ωXj2

,ωXj3
) with respect to the first-

order response multipliers, cXj1
µk (ωXj1

), and using the stationarity
condition in Eq. (157), gives the second-order response amplitude
equation needed for constructing the cubic response function in
Subsection V D 5,

∑

νm
(Jµkνm − (ωXj1

+ ωXj2
)δµkνm)c

Xj1Xj2
νm (ωXj1

,ωXj2
)

= −PXj1 Xj2
ωXj1

ωXj2
∑

νm
⟨µk∣[eZe−ZX

∗T
j1 eZe−Z , ∣νm⟩⟨HF∣]∣HF⟩cXj2

νm (ωXj2
).

(166)

Applying the 2n + 1 and 2n + 2 rules to the third-order Lagrangian,
cLXj1Xj2Xj3 (ωXj1

,ωXj2
,ωXj3

) of Eq. (165), gives the quadratic response

function [cf. Eq. (126)]

⟨⟨Xj1 ;Xj2 ,Xj3⟩⟩ωXj2
,ωXj3

=
1
2
C±ωPXj1 Xj2 Xj3

ωXj1
ωXj2

ωXj3
∑

µkνm
cXj2
µk (ωXj2

)⟨µk∣[eZe−ZX
∗T
j1 eZe−Z , ∣νm⟩⟨HF∣]

× ∣HF⟩cXj3
νm (ωXj3

)

=
1
2
C±ωPXj1 Xj2 Xj3

ωXj1
ωXj2

ωXj3
∑

µkνm
cXj2
µk (ωXj2

)JX
µkνmc

Xj3
νm (ωXj3

),

ωXj1
+ ωXj2

+ ωXj3
= 0, (167)
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where cXj1
νm (ωXj1

) amplitudes and cXj1
µk (ωXj1

) multipliers are obtained
from Eqs. (162) and (163), respectively, and where

JX
µkνm = ⟨µk∣[eZe−ZX

∗TeZe−Z , ∣νm⟩⟨HF∣]∣HF⟩ (168)

is the property Jacobian, which can be viewed as the Jacobian of
Eq. (129) with H

∗T
0 replaced by X

∗T .

5. Fourth-order molecular properties

The fourth-order molecular properties can be obtained from
the cubic response function. Applying the 2n + 1 rule for the ampli-
tudes and the 2n + 2 rule for the multipliers, the cubic response func-
tion can be obtained from the fourth-order quasi-energy Lagrangian
cLXj1Xj2Xj3Xj4 (ωXj1

,ωXj2
,ωXj3

,ωXj4
) as

⟨⟨Xj1 ;Xj2 ,Xj3 ,Xj4⟩⟩ωXj2
,ωXj3

,ωXj4

=
1
2
C±ωPXj1 Xj2 Xj3 Xj4

ωXj1
ωXj2

ωXj3
ωXj4

⎛

⎝
∑

µkνm
cXj2
µk (ωXj2

)⟨µk∣[eZe−ZX
∗T
j1 eZe−Z , ∣νm⟩⟨HF∣]∣HF⟩cXj3Xj4

νm

× (ωXj3
,ωXj4

) − (∑

µk
cXj2
µk (ωXj2

)cXj3
µk (ωXj3

))(∑

νm
⟨HF∣eZe−ZX

∗T
j1 eZe−Z ∣νm⟩c

Xj4
νm (ωXj4

)),

ωXj1
+ ωXj2

+ ωXj3
+ ωXj4

= 0, (169)

where cXj1
νm (ωXj1

), cXj1
µk (ωXj1

), and cXj1Xj2
νm (ωXj1

,ωXj2
) are obtained from

Eqs. (162), (163), and (166), respectively.
The route of derivation outlined here can straightforwardly be

followed to determine higher-order response functions for the CL
state.

E. Structural simplicity of molecular property
expressions for CL states

Comparing the response functions obtained for CL and CC
states (for the latter, see, for example, Sec. VIII of Ref. 11), we see
that the response functions for the CL state contain contributions
only from the cLXj1 term [Eq. (153)] of the quasi-energy Lagrangian,
whereas the response functions for the CC state contain contri-
butions from both the cLXj1 and cLNL

H0 terms.11 The contributions
that arise from cLNL

H0 contain the two-electron Hamiltonian H0, and
therefore, their leading-order computational scaling is one order of
magnitude larger than for corresponding contributions that arise
from cLXj1 and contain only one-electron operators X. Hence, the
determination of response functions for a CL state is greatly sim-
plified, both in terms of the structure of the equations and the
computational scaling, compared to response functions for a CC
state.

For calculating the response functions and right-hand sides of
the response equations for a CL state, we have to determine two
property vectors

ΩX
µi = ⟨µi∣eZe−ZX

∗TeZe−Z ∣HF⟩, i = 1, 2, . . . , t, (170)

γXνj = ⟨HF∣eZe−ZX
∗TeZe−Z ∣νj⟩, j = 1, 2, . . . , t, (171)

and linear transformations of the property Jacobian in Eq. (168) with
the amplitude and multiplier response vectors, e.g.,

(JXcY)µi =
t
∑

j=1
∑

νj
JX
µiνjc

Y
νj

=

t
∑

j=1
∑

νj
⟨µi∣[eZe−ZX

∗TeZe−Z , ∣νj⟩⟨HF∣]∣HF⟩cYνj ,

i = 1, 2, . . . , t. (172)

The property vectors in Eqs. (170) and (171) enter, for example,
in the right-hand sides of the first-order response equations for
the amplitudes and multipliers, Eqs. (162) and (163), respectively.
The linear transformation of the property Jacobian with first-order
response vectors arises, for example, when the quadratic response
function in Eq. (167) is evaluated. Response functions for a CI state
(see Sec. VI of Ref. 11) contain only cLXj1 term, as for the CL tar-
get state. Similarly, CI response functions and right-hand sides of
CI response equations, as determined in Sec. VI of Ref. 11, contain
only two property vectors and linear transformations of the property
Jacobian with the response vectors, which are structurally analogous
to Eqs. (170)–(172) for the CL state. The same structural simplifica-
tions thus occur for determining response functions for a CL and a
CI state.

When evaluating response functions for a CL state, we have
to solve response equations, e.g., Eqs. (162) and (163). These equa-
tions are solved using iterative algorithms and require linear trans-
formations of the Jacobian J of Eq. (129) on trial vectors b, i.e.,
Jb and bT J. Since the Jacobian contains the two-electron opera-
tor H0, the leading-order scaling for the evaluation of these linear
transformations is an order of magnitude larger than for construct-
ing the response functions and the right-hand sides of the response
equations. The leading-order computational scaling for determin-
ing CL response functions therefore arises from solving the response
equations. When CP theory is used for a CL target state, we do
not need to solve the response equations iteratively. Instead, we can
determine a series of corrections in orders of the CC parent-state
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similarity-transformed fluctuation potential, where the zeroth-order
term is equal to the response function for the CC parent state and
where the series formally converges to the response functions for the
CL target state. In particular, it becomes computationally attractive
to use CP theory if low-order corrections can reproduce the target
quantities to high accuracy. Recall that the time evolution of the CL
state is linearly parametrized and zeroth-order molecular properties
therefore become EOM-CC molecular properties.17–19 In Sec. VI,
we use CP theory to determine the lowest-order perturbative cor-
rections for excitation energies and linear response function in the
CPSD(LT) model.

VI. LOWEST-ORDER CORRECTIONS
FOR THE CPSD(LT) MODEL

In Sec. IV, a series of energy corrections were determined for
the CP model CPSD(LT), where the zeroth-order energy was the
energy of the CCSD parent state and where the series formally con-
verges to the energy of the CL target state. Using CP theory, series
of molecular property corrections can also be determined, where the
zeroth-order molecular properties are the molecular properties of
the CCSD parent state and where the series formally converges to
the molecular properties of the CL target state. The theoretical foun-
dation for determining such a series is the same for a CL target state
as for a CC target state and is described in Paper I1 for a CC target
state. For the CPSD(LT) model, we determine first- and second-
order corrections to parent state excitation energies in Secs. VI A
and VI B and the first-order correction to the linear response
function in Sec. VI C.

A. Lowest-order corrections for excitation energies
In this subsection, we consider how an excitation energy can

be determined for the CPSD(LT) model using CP theory, where a
series of excitation-energy corrections to a CCSD excitation energy
is determined in orders of the parent-state similarity-transformed
fluctuation potential, and where the series formally converges to
the excitation energy of the CL target state. We derive explicit
expressions for the lowest-order corrections and use these correc-
tions to analyze the size-extensivity of the CPSD(LT) excitation
energies.

1. Perturbative approach to determination
of excitation energies

Excitation energies are obtained from the response eigenvalue
equation13,14,29,30

J Rx = ωx Rx, (173a)
Lx J = Lx ωx, (173b)
LxRy = δxy, (173c)

where Rx and Lx are right and left eigenvectors for an excited state
x, and ωx is the corresponding excitation energy. The Jacobian reads
[cf. Eq. (129)]

Jµiνj = ⟨µi∣[eZe−ZH
∗T
0 eZe−Z , ∣νj⟩⟨HF∣]∣HF⟩, i, j = 1, 2, 3, (174)

or, in the expanded form,

Jµiνj = ⟨µi∣eZe−ZH
∗T
0 eZe−Z ∣νj⟩ − δµiνj⟨HF∣eZe−ZH

∗T
0 eZe−Z ∣HF⟩

= ⟨µi∣H
∗T
0 ∣νj⟩ − zµi⟨HF∣H

∗T
0 ∣νj⟩ − ⟨µi∣e−ZH

∗T
0 eZ ∣HF⟩zνj

− δµiνj
⎛

⎝

⟨HF∣H
∗T
0 ∣HF⟩ +

3
∑

r=1
∑

λr
⟨HF∣H

∗T
0 ∣λr⟩zλr

+
3
∑

r=1
∑

λr
zλr ⟨λr ∣e

−ZH
∗T
0 eZ ∣HF⟩

⎞

⎠

, i, j = 1, 2, 3. (175)

Using Eqs. (96) and (33) together with Eq. (38), we obtain from
Eq. (175)

Jµiνj = Aµiνj − zµi⟨HF∣Φ
∗T

∣νj⟩(δj1 +δj2)−δµiνj
2
∑

r=1
∑

λr
⟨HF∣Φ

∗T
∣λr⟩zλr ,

i, j = 1, 2, 3. (176)

To obtain Eq. (176), we have further used that the last term in
Eq. (38) vanishes when the auxiliary space is restricted to contain
only one excitation level [see Sec. III C], following from Eq. (49).
The amplitudes zµi in Eq. (176) satisfy [cf. Eq. (52)]

3
∑

j=1
∑

νj
Aµiνjzνj + ⟨µi∣Φ

∗T
∣HF⟩δi3 − zµi(

2
∑

j=1
∑

νj
⟨HF∣Φ

∗T
∣νj⟩zνj) = 0,

i = 1, 2, 3. (177)

Both Eqs. (176) and (177) contain the extended parent-state Jaco-
bian in Eq. (37). To determine molecular property perturbation
corrections, including excitation energy corrections, we use in CP
theory the parent-state Jacobian partitioning of Eqs. (56) and (57)
for the the extended parent-state Jacobian. Substituting Eqs. (56) and
(57) into Eqs. (176) and (177), we obtain

Jµiνj = A(0)µiνj + A(1)µiνj − zµi⟨HF∣Φ
∗T

∣νj⟩(δj1 + δj2)

− δµiνj
2
∑

r=1
∑

λr
⟨HF∣Φ

∗T
∣λr⟩zλr , i, j = 1, 2, 3, (178)

3
∑

j=1
∑

νj
A(0)µiνjzνj +

3
∑

j=1
∑

νj
A(1)µiνjzνj + ⟨µi∣Φ

∗T
∣HF⟩δi3

−zµi(
2
∑

j=1
∑

νj
⟨HF∣Φ

∗T
∣νj⟩zνj) = 0, i = 1, 2, 3. (179)

In the following, we will determine a series of corrections to the
CCSD excitation energies that target CPSD(LT) excitation energies,
by expanding the Jacobian in Eq. (178) in orders of the parent-state
similarity-transformed fluctuation potential

J = J (0) + J (1) + J (2) + J (3) + . . . , (180)

where the zeroth-order eigenvalue equation satisfies

J(0) R(0)x = ω(0)x R(0)x , (181a)

L(0)x J(0) = L(0)x ω(0)x , (181b)

L(0)x R(0)x = 1, (181c)
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ω(0)x = ωCCSD
x , (182)

where ωCCSD
x is a CCSD Jacobian eigenvalue, and then solving the

response eigenvalue equation order by order in the parent-state
similarity-transformed fluctuation potential.

All terms in the Jacobian expansion in Eq. (178) contain the
parent-state similarity-transformed fluctuation potential and are
thus of at least first order, except A(0), for which fluctuation potential
terms are regarded as having zeroth order. A(0) contains Fock opera-
tor terms in addition to the fluctuation potential terms in the parent
space sub-block. Assigning J (0) to be equal to A(0) of Eq. (57a),
J (0) can in the two-component form be written as [cf. Eq. (59)]

J (0) = A(0) = (

JCCSD 0
0 εT

). (183)

The singles-and-doubles component of the matrix J(0) satisfies the
zeroth-order response eigenvalue equation in Eqs. (181) and (182)

(

JCCSD 0
0 εT

)(

RCCSD
x

0
) = ωCCSD

x (

RCCSD
x

0
), (184)

implying that

R(0)x = (

RCCSD
x

0
), (185)

L(0)x = (LCCSD
x 0). (186)

The amplitudes zµi entering in the Jacobian of Eq. (178)
are determined solving Eq. (179) order by order in Φ

∗T . Explicit
expressions for the lowest-order amplitude corrections are given
in Eqs. (66)–(68). Substituting these lowest-order corrections in
Eq. (178), we obtain the lowest-order Jacobian corrections as

J(0)µiνj = A(0)µiνj = ⟨µi∣[H
∗T
0 , θνj]∣HF⟩(δi1δj1 + δi1δj2 + δi2δj1 + δi2δj2)

+ ενjδµiνjδi3δj3, i, j = 1, 2, 3, (187)

J(1)µiνj = A(1)µiνj = ⟨µi∣[Φ
∗T , θνj]∣HF⟩(δi1δj3 + δi2δj3 + δi3δj1

+δi3δj2 + δi3δj3), i, j = 1, 2, 3, (188)

J(2)µiνj = −z
(1)
µi ⟨HF∣Φ

∗T
∣νj⟩(δj1 + δj2) − δµiνj

2
∑

r=1
∑

λr
⟨HF∣Φ

∗T
∣λr⟩z(1)λr

= −z(1)µi ⟨HF∣Φ
∗T

∣νj⟩(δi3δj1 + δi3δj2), i, j = 1, 2, 3, (189)

J(3)µiνj = −z
(2)
µi ⟨HF∣Φ

∗T
∣νj⟩(δj1 + δj2) − δµiνj

2
∑

r=1
∑

λr
⟨HF∣Φ

∗T
∣λr⟩z(2)λr ,

i, j = 1, 2, 3. (190)

To obtain Eqs. (187) and (188), we have used Eqs. (57). To obtain
the second equality in Eq. (189), we have used Eq. (66a).

B. Arbitrary-order corrections for excitation energies
To determine a series of excitation energy corrections in orders

of the parent-state similarity-transformed fluctuation potential, we
introduce an order expansion of the excitation energies and the left
and right eigenvectors of Eq. (173)

Rx =R(0)x + R(1)x + R(2)x + R(3)x +⋯, (191)

Lx = L(0)x + L(1)x + L(2)x + L(3)x +⋯, (192)

ωx = ω(0)x + ω(1)x + ω(2)x + ω(3)x +⋯, (193)

and substitute Eqs. (191)–(193), together with the Jacobian expan-
sion in Eq. (180), into the response eigenvalue equation of Eq. (173).
Collecting terms of order k, we obtain the kth-order eigenvalue
equation

k
∑

p=0
J(p)R(k−p)x =

k
∑

p=0
ω(p)x R(k−p)x , (194)

which can be rearranged as

(J(0) − ω(0)x I)R(k)x =

k
∑

p=1
ω(p)x R(k−p)x −

k
∑

p=1
J(p)R(k−p)x , (195)

where the zeroth-order Jacobian, J(0) of Eq. (183), has a block-
diagonal structure. Projecting Eq. (195) against the zeroth-order left
eigenvector, L(0)x , we obtain the k-order correction to the CCSD
excitation energy

ω(k)x =

k
∑

p=1
L(0)x J(p)R(k−p)x , (196)

where we have used Eq. (181b) and

L(0)x R(k)y = 0, k > 0. (197)

Note that the right-hand side of Eq. (196) depends only on the right
eigenvectors through order (k − 1).

When excitation energy corrections have been determined
through order k, they can be substituted into Eq. (195) to determine
the kth-order correction to the right eigenvector. The kth-order right
eigenvalue equation can in the two-component form be written as

(JCCSD
− ω(0)x I)R(k)xSD =

k
∑

p=1
ω(p)x R(k−p)xSD −

k
∑

p=2
J(p)SD,SDR

(k−p)
xSD

−

k−1
∑

p=1
J(p)SD,TR

(k−p)
xT , (198a)

R(k)xT = (εT − ω(0)x I)
−1⎛

⎝

k−1
∑

p=1
ω(p)x R(k−p)xT

−

k
∑

p=1
J(p)T,SDR

(k−p)
xSD −

k−1
∑

p=1
J(p)T,TR

(k−p)
xT

⎞

⎠

,

(198b)

where SD denotes the singles-and-doubles subspace and T denotes
the triples subspace. To obtain Eqs. (198), we used the first-order
Jacobian which has a vanishing SD−SD sub-block [see Eq. (188)]
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and the triples component of the zeroth-order right eigenvector van-
ishes [see Eq. (185)]. In the following, we use Eqs. (196) and (198) to
determine lowest-order corrections to excitation energies.

1. First-order excitation energies
Using Eqs. (196) and (198), we obtain first-order corrections to

the excitation energy and to the right eigenvector

ω(1)x = L(0)x J(1)R(0)x = (LCCSD
x 0 )

⎛

⎝

0 J(1)SD,T
J(1)T,SD J(1)T,T

⎞

⎠

(
RCCSD
x

0 ) = 0,

(199)

(JCCSD
− ωCCSD

x I)R(1)xSD = ω(1)x RCCSD
x = 0, (200a)

R(1)xT = −(εT − ωCCSD
x I)

−1
J(1)T,SDR

CCSD
x . (200b)

The first-order singles-and-doubles component vanishes

R(1)xµi = 0, i = 1, 2, (201)

and the triples component becomes

R(1)xµ3 = −(εµ3 − ω
CCSD
x )

−1
⟨µ3∣[Φ

∗T ,RCCSD
x ]∣HF⟩, (202)

where

RCCSD
x =

2
∑

i=1
∑

µi
RCCSD
xµi θµi . (203)

To obtain Eqs. (199)–(202), we have used Eqs. (185)–(188).

2. Second-order excitation energies
The second-order correction to the excitation energy becomes

ω(2)x = L(0)x J(2)R(0)x + L(0)x J(1)R(1)x

= LCCSD
x J(2)SD,SD RCCSD

x + LCCSD
x J(1)SD,T R(1)xT

= LCCSD
x J(1)SD,T R(1)xT , (204)

where to obtain the second equality we have used Eqs. (185)–(188)
and to obtain the last equality we have used that J(2)SD,SD = 0 [see
Eq. (189)]. The second-order corrections to the right eigenvector
read

(JCCSD
− ωCCSD

x I)R(2)xSD = ω(2)x RCCSD
x − J(1)SD,TR

(1)
xT , (205a)

R(2)xT = −(εT − ωCCSD
x I)

−1⎛

⎝

J(2)T,SDR
CCSD
x + J(1)T,TR

(1)
xT

⎞

⎠

. (205b)

In the commutator form, Eqs. (204) and (205) become

ω(2)x = ⟨LCCSD
x ∣[Φ

∗T ,R(1)x3 ]∣HF⟩, (206)

2
∑

j=1
∑

νj
(JCCSD
µiνj − ω

CCSD
x δµiνj)R

(2)
xνj = ω

(2)
x RCCSD

xµi −⟨µi∣[Φ
∗T ,R(1)x3 ]∣HF⟩,

i = 1, 2, (207a)

R(2)xµ3 = −(εµ3 − ω
CCSD
x )

−1⎛

⎝

− z(1)µ3 ⟨HF∣Φ
∗T

∣RCCSD
x ⟩

+ ⟨µ3∣[Φ
∗T ,R(1)x3 ]∣HF⟩

⎞

⎠

, (207b)

where we have introduced the notation

R(k)x3 = ∑

µ3

R(k)xµ3θµ3 . (208)

3. Third-order excitation energies
The third-order correction to the CCSD excitation energy is

given by

ω(3)x = L(0)x J(1)R(2)x + L(0)x J(2)R(1)x + L(0)x J(3)R(0)x

= LCCSD
x J(1)SD,T R(2)xT + LCCSD

x J(2)SD,T R(1)xT + LCCSD
x J(3)SD,SD RCCSD

x

= LCCSD
x J(1)SD,T R(2)xT + LCCSD

x J(3)SD,SD RCCSD
x , (209)

where to obtain the second equality we have used Eqs. (188) and
(201) and to obtain the last equality we have used Eq. (189). Using
Eqs. (188) and (190), the commutator form of Eq. (209) becomes

ω(3)x = ⟨LCCSD
x ∣[Φ

∗T ,R(2)x3 ]∣HF⟩ −
⎛

⎝

2
∑

i=1
∑

µi
LCCSD
xµi z(2)µi

⎞

⎠

× ⟨HF∣Φ
∗T

∣RCCSD
x ⟩ −

⎛

⎝

2
∑

i=1
∑

µi
LCCSD
xµi RCCSD

xµi
⎞

⎠

×

⎛

⎝

2
∑

j=1
∑

νj
⟨HF∣Φ

∗T
∣νj⟩z(2)νj

⎞

⎠

. (210)

4. Weak size-extensivity of excitation energies
We will now compare the lowest-order excitation energy cor-

rections in the CPSD(LT) model with the ones we have obtained
in Paper II7 for the CPSD(T) model. Initially, we recognize that
the first-order right eigenvector R(1)xµi , i = 1, 2, 3, in Eqs. (97) of
Paper II7 is equal to the first-order eigenvector R(1)xµi , i = 1, 2, 3 in
Eqs. (201) and (202). For the second-order right eigenvector, the
sum of the first and third term of the right-hand side of the singles-
and-doubles component R(2)xµi , i = 1, 2, of Eq. (99a) in Paper II7 gives
R(2)xµi , i = 1, 2, of Eq. (207a); the second term of the right-hand
side of Eq. (99a) in Paper II7 is a connected contribution involv-
ing δT(1)3 that has no counterpart in Eq. (207a). The second-order
triples component R(2)xµ3 in Eq. (99b) of Paper II7 has the last term on
the right-hand side in common with R(2)xµ3 of Eq. (207b), while the
first term, describing a connected commutator contribution which
involves the first-order triples amplitudes and the CCSD right exci-
tation amplitudes, is replaced by a non-size-extensive contribution
in Eq. (207b) involving the same quantities. The first-order exci-
tation energy corrections vanish in both models. For the CPSD(T)
model, the second-order excitation energy correction in Eq. (98) of
Paper II7 contains two terms. The first term is a connected contribu-
tion involving the first-order triples amplitude corrections and the
CCSD right eigenvector, while the second term involves the first-
order right triples eigenvector. This last term is the only contribution
in ω(2)x of the CPSD(LT) model in Eq. (206). For the CPSD(LT)
model, ω(3)x in Eq. (210) contains three terms, the first term is struc-
turally equal to the last term in ω(3)x in Eq. (100) of Paper II,7 while
the last two terms in Eq. (210) show a quadratic dependence on the
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system size, and ω(3)x therefore is not size-extensive. However, the
excitation energies in the CPSD(LT) model are weakly size-extensive
because the zeroth-order CCSD excitation energy contribution and
the first non-vanishing correction (i.e., second-order contribution)
in Eq. (206) are size-extensive, and non-size-extensive contributions
first start to enter in third order in the series of excitation energy
corrections.

C. Lowest-order corrections for linear
response function

In this subsection, we will determine the zeroth- and first-order
corrections to the linear response function of Eq. (164). Since the
parent state for the CPSD(LT) model is a CCSD state and since the
time evolution of the |CL⟩ state is linearly parametrized, the zeroth-
order linear response function will become the EOM-CCSD linear
response function.19,31,32 The linear response function in Eq. (164)
can be written as

⟨⟨X;Y⟩⟩ωY
=

1
2
C±ωPXY

ωXωY γ
XcY(ωY), ωX + ωY = 0, (211)

where cX contains the response amplitudes of Eq. (162)

(J − ωXI)cX(ωX) = −ΩX , (212)

and 
X and γX are given in Eqs. (170) and (171), respectively. The
amplitude and multiplier corrections in orders of Φ

∗T are given in
Eqs. (65)–(71). We initially consider the zeroth- and first-order con-
tributions to the vectors 
X and γX . An element of the 
X vector of
Eq. (170) can be written as

ΩX
µi = ⟨µi∣e−ZX

∗TeZ ∣HF⟩ = ⟨µi∣X
∗T

∣HF⟩ + ⟨µi∣[X
∗T ,Z]∣HF⟩

+
1
2
⟨µi∣[[X

∗T ,Z],Z]∣HF⟩, i = 1, 2, 3,

(213)

where to obtain the first equality we have used Eq. (92) and to obtain
the second equality we have applied the BCH expansion and used
that Z2 = 0. As the property operator X has no order in Φ

∗T and
since the zeroth-order amplitudes vanish, the zeroth- and first-order
contributions to the 
X vector become

ΩX
µi
(0)

= ⟨µi∣X
∗T

∣HF⟩, i = 1, 2, 3, (214)

ΩX
µi
(1)

= ⟨µi∣[X
∗T ,Z(1)]∣HF⟩ = ∑

ν3

⟨µi∣[X
∗T , ∣ν3⟩⟨HF∣]∣HF⟩z(1)ν3

= ∑

ν3

AX
µiν3z

(1)
ν3 , i = 1, 2, 3, (215)

where in the last equality of Eq. (215) we have introduced the CCSD
extended parent-state property Jacobian for a linear parametrization

AX
µiνj = ⟨µi∣[X

∗T , ∣νj⟩⟨HF∣]∣HF⟩, i, j = 1, 2, 3. (216)

We now rewrite the CCSD extended parent-state property Jaco-
bian for a linear parametrization to become the CCSD extended

parent-state property Jacobian for an exponential parametrization
and therefore write Eq. (216) in the form

AX
µiνj = ⟨µi∣[X

∗T , θνj]∣HF⟩ + ⟨µi∣θνjX
∗T

∣HF⟩ − δµiνj⟨HF∣X
∗T

∣HF⟩,

i, j = 1, 2, 3,
(217)

where ⟨µi∣[X
∗T , θνj]∣HF⟩ is the CCSD extended parent-state prop-

erty Jacobian for an exponential parametrization. Substituting the
resolution of the identity in the complete orthonormal basis ∣B⟩ of
Eq. (5) into the second term of Eq. (217) gives

⟨µi∣θνjX
∗T

∣HF⟩ = ⟨µi∣θνj ∣HF⟩⟨HF∣X
∗T

∣HF⟩ +
2
∑

r=1
∑

λr
⟨µi∣θνj ∣λr⟩

× ⟨λr ∣X
∗T

∣HF⟩ +
∞
∑

r=3
∑

λr
⟨µi∣θνj ∣λr⟩⟨λr ∣X

∗T
∣HF⟩

= δµiνj⟨HF∣X
∗T

∣HF⟩ +
2
∑

r=1
∑

λr
⟨µi∣θνj ∣λr⟩⟨λr ∣X

∗T
∣HF⟩,

i, j = 1, 2, 3, (218)

where to obtain the last equality we have used that∑∞r=3∑λr ⟨µi∣θνj ∣λr⟩
= 0 for i, j = 1, 2, 3. Substituting Eq. (218) into Eq. (217), gives

AX
µiνj = ⟨µi∣[X

∗T , θνj]∣HF⟩ +
2
∑

r=1
∑

λr
⟨µi∣θνj ∣λr⟩⟨λr ∣X

∗T
∣HF⟩,

i, j = 1, 2, 3. (219)

We now consider the γX vector of Eq. (171). In order to identify
the EOM-CCSD linear response function as the zeroth-order term in
the CPSD(LT) linear response function series, we include the first-
order multipliers in the zeroth-order γX vector, giving

γXνj
(0)

= ⟨HF∣eZ
(1)
X
∗Te−Z

(1)
∣νj⟩(δj1 + δj2), j = 1, 2, 3, (220)

where we have used that the zeroth-order amplitudes and multipliers
vanish and that the vector ⟨HF∣eZ

(1)
X
∗Te−Z

(1)
∣νj⟩ has contributions

only in the singles-and-doubles space since the vector ⟨HF∣X
∗T

∣νj⟩
and the first-order multipliers of Eq. (69) have non-vanishing con-
tributions only in the singles-and-doubles space. To avoid double
counting, we express a kth-order correction to the γX vector as

γXνj
(k)

=

⎧
⎪⎪
⎨
⎪⎪
⎩

⟨HF∣eZe−ZX
∗TeZe−Z ∣νj⟩ − ⟨HF∣eZ

(1)
X
∗Te−Z

(1)
∣νj⟩

× (δj1 + δj2)
⎫
⎪⎪
⎬
⎪⎪
⎭

{k}

, j = 1, 2, 3, k > 0, (221)

where the { .}{k} notation has been defined after Eq. (65). Using
Eq. (221), the first-order contribution to the γX vector becomes

γXνj
(1)

= ⟨HF∣[X
∗T ,Z(1)]∣νj⟩ = 0, j = 1, 2, 3, (222)

where to obtain the last equality we have used Eq. (17).
We are now in a position to determine the zeroth- and first-

order corrections to the response amplitudes of Eq. (212) and to
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the linear response function of Eq. (211). To obtain the response
amplitude corrections, we use Eqs. (214), (215), and (56)

2
∑

j=1
∑

νj
(JCCSD
µiνj − ωXδµiνj)c

X
νj
(0)

(ωX) = −⟨µi∣X
∗T

∣HF⟩, i = 1, 2,

(223a)

(εµ3 − ωX)cXµ3

(0)
(ωX) = −⟨µ3∣X

∗T
∣HF⟩, (223b)

2
∑

j=1
∑

νj
(JCCSD
µiνj − ωXδµiνj)c

X
νj
(1)

(ωX)

= −∑

ν3

AX
µiν3z

(1)
ν3 −∑

ν3

J(1)µiν3c
X
ν3

(0)
(ωX), i = 1, 2, (224a)

(εµ3 − ωX)cXµ3

(1)
(ωX) = −∑

ν3

AX
µ3ν3z

(1)
ν3 −

3
∑

j=1
J(1)µ3νjc

X
νj
(0)

(ωX).

(224b)

Using Eqs. (220) and (222), the zeroth- and first-order corrections
to the linear response function of Eq. (211) become

⟨⟨X;Y⟩⟩
(0)
ωY

=
1
2
C±ωPXY

ωXωY

2
∑

j=1
∑

νj
⟨HF∣eZ

(1)
X
∗Te−Z

(1)
∣νj⟩cYνj

(0)
(ωY),

ωX + ωY = 0, (225)

⟨⟨X;Y⟩⟩
(1)
ωY

=
1
2
C±ωPXY

ωXωY(γ
X(1)cY

(0)
(ωY) + γX

(0)
cY
(1)

(ωY))

=
1
2
C±ωPXY

ωXωY

2
∑

j=1
∑

νj
⟨HF∣eZ

(1)
X
∗Te−Z

(1)
∣νj⟩cYνj

(1)
(ωY),

ωX + ωY = 0. (226)

The singles-and-doubles space component of the zeroth-order
response amplitudes in Eq. (223a) is identical to the CCSD response
amplitudes tYνj

CCSD
(ωY) [see, e.g., Eq. (381) in Ref. 11], and the

first-order multipliers in Eq. (69) have only a singles-and-doubles
component that is identical to the CCSD multipliers tCCSD

µi [see, e.g.,
Eqs. (327)–(329) in Ref. 11]. This means that the zeroth-order linear
response function in Eq. (225) can be written as

⟨⟨X;Y⟩⟩
(0)
ωY =

1
2
C±ωYPXY

ωXωY

2
∑

j=1
∑

νj
⟨HF∣eT

CCSD

XTe−T
CCSD

∣νj⟩tYνj
CCSD

(ωY),

ωX + ωY = 0, (227)

where

TCCSD
=

2
∑

i=1
∑

µi
tCCSD
µi ∣HF⟩⟨µi∣. (228)

Equation (227) shows that the zeroth-order linear response func-
tion in the CPSD(LT) model is identical to the EOM-CCSD linear
response function [cf. Eq. (407) in Ref. 11]

⟨⟨X;Y⟩⟩
(0)
ωY = ⟨⟨X;Y⟩⟩

EOM-CCSD
ωY . (229)

The EOM-CCSD linear response function is weakly size-extensive
(see Paper IX33). The first-order linear response function correc-
tion ⟨⟨X;Y⟩⟩

(1)
ωY

has non-size-extensive contributions, for example,

via the −∑ν3
AX
µiν3z

(1)
ν3 term in first-order amplitude equation in

Eq. (224a), where the second term in AX
µiνj of Eq. (219) will intro-

duce a non-size-extensive contribution. Since ⟨⟨X;Y⟩⟩
(1)
ωY

can be
viewed as a correction to the EOM-CCSD series of linear response
function corrections as obtained from the CPSD(LT) model, the
linear response functions obtained from the series ⟨⟨X;Y⟩⟩

(i)
ωY

,
i = 1, 2, . . ., can be viewed as additional corrections and the lin-
ear response functions obtained from Eq. (211) therefore become
weakly size-extensive.

VII. SUMMARY AND CONCLUSIONS
In this paper, we extend CP theory to use a CL state as a

target state. In this way, CP theory is extended to comprehend a
wave-function model, in which the strengths of CC theory (size-
extensivity of energies and molecular properties), Møller-Plesset
perturbation theory (simple description of energies and molecular
properties without the need of solving amplitude and response equa-
tions iteratively), and CI theory (linear parametrization and simple
structure of amplitude equations and molecular property expres-
sions) are combined to obtain a simpler and more efficient descrip-
tion of the energy and molecular properties of a molecular system
than can be obtained using a standard CC state.

In CP theory with a CL target state, we determine, as for CP the-
ory with a CC target state, a series of energy or molecular property
corrections in orders of the CC parent-state similarity-transformed
fluctuation potential, where the zeroth-order term is the energy or
molecular property of the CC parent state and where the series for-
mally converges to the energy or molecular property of the target
state. Since the CL target state is linearly parametrized, the energy
and molecular property expressions are simpler for the CL target
state than for a CC target state. The amplitude equations are thus
quadratic for a CL state, while quartic for a CC state, and molecular
property expressions for a CL state have the simple structure char-
acteristic for a linearly parametrized CI state. Since the CL state is
linearly parametrized, the energy and molecular properties are not
size-extensive, but only weakly size-extensive. For the energy, weak
size-extensivity means that non-size-extensive contributions start to
enter in sixth order in CP theory, and for molecular properties, weak
size-extensivity means that non-size-extensive contributions start to
enter in second order. The fact that energies and molecular prop-
erties are weakly size-extensive therefore means that the non-size-
extensive contributions will have little effect on calculated energies
and molecular properties.

These theoretical observations are supported by calculations
of the ground-state energies through sixth order, using a CCSD
parent state and a target state including triple excitations. Calcu-
lations are performed for the HF molecule at three inter-nuclear
distances and the N2 and CH2 molecules at their equilibrium geome-
tries. It is found that the fifth-order energy is size-extensive for both
the CPSD(LT) and CPSD(T) models and is nearly independent of
whether an exponential or a linear expansion is used to define the
wave function beyond the parent state. For both models, the fifth-
order energies are all within 0.0001 Hartree of the CCSDT energies
and thus provide a highly accurate approximation. The sixth-order
energy corrections do not in general improve the fifth-order results,
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irrespective of whether a linear or exponential parametrization is
used.

CL states have not previously been considered for describ-
ing the electronic structure of a molecular system. Due to its traits
summarized earlier in this section, CL theory may constitute an
attractive alternative to CC theory even outside the CP framework
(i.e., even without considering perturbative approximations to CL
states). For that reason, we have in this paper developed the gen-
eral theory for determining the energy and molecular properties for
a CL state. The theoretical development is carried out following an
outline similar to the one that is used for determining the energy
and molecular properties for a CC state. For determining response
functions, and thus molecular properties, it has been imperative
to use the development in response function theory described in
Ref. 11. However, when this is done and CL states are used as tar-
get states in CP theory, a very efficient and compact description is
obtained for the energy and molecular properties of a molecular sys-
tem with a single-configuration dominated ground state. For high
accuracy calculations, where the effect of triples and higher exci-
tation levels needs to be considered, CP theory with a CL target
state becomes the most efficient way of describing the electronic
structure of single-configuration dominated molecular systems. In
this way, lower excitation levels are treated at a CC level of theory
through the CC parent state, while the effect of higher excitation
levels, for which disconnected contributions in the wave function
are of little importance, is described using a linear parametriza-
tion, which in turn leads to structurally and computationally
much simpler expressions for the energy and, in particular, for
molecular properties than can be obtained using conventional CC
theory.
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APPENDIX A: THE LOWEST-ORDER ENERGY
CORRECTIONS FOR THE CPSD(T) MODEL

E(0)0 =
∗E0 = ⟨HF∣H

∗T
0 ∣HF⟩, (A1)

E(1)0 = 0, (A2)

E(2)0 = 0, (A3)

E(3)0 = ⟨
∗tCCSD

∣[Φ
∗T ,δT(1)]∣HF⟩, (A4)

E(4)0 = ⟨
∗tCCSD

∣[Φ
∗T ,δT(2)3 ]∣HF⟩, (A5)

E(5)0 = ⟨
∗tCCSD

∣[Φ
∗T ,δT(3)3 ]∣HF⟩

+ ⟨
∗tCCSD

∣[[Φ
∗T ,δT(2)1 ],δT(1)3 ]∣HF⟩

+
1
2
⟨HF∣[[Φ

∗T ,δT(2)1 ],δT(2)1 ]∣HF⟩, (A6)

E(6)0 = ⟨
∗tCCSD

∣[Φ
∗T ,δT(4)3 ]∣HF⟩

+
1
2
⟨
∗tCCSD

∣[[Φ
∗T ,δT(2)1 ],δT(2)1 ]∣HF⟩

+ ⟨
∗tCCSD

∣[[Φ
∗T ,δT(3)],δT(1)]∣HF⟩

+ ⟨HF∣[[Φ
∗T ,δT(2)1 ],δT(3)1 ]∣HF⟩. (A7)

APPENDIX B: THE LOWEST-ORDER AMPLITUDE
EQUATIONS FOR THE CPSD(T) MODEL

δt(1)µi = 0, i = 1, 2, (B1a)

εµ3δt
(1)
µ3 = −⟨µ3∣Φ

∗T
∣HF⟩, (B1b)

2
∑

j=1
∑

νj
JCCSD
µiνj δt(2)νj = −⟨µi∣[Φ

∗T ,δT(1)3 ]∣HF⟩, i = 1, 2, (B2a)

εµ3δt
(2)
µ3 = −⟨µ3∣[Φ

∗T ,δT(1)3 ]∣HF⟩, (B2b)

2
∑

j=1
∑

νj
JCCSD
µiνj δt(3)νj = −⟨µi∣[Φ

∗T ,δT(2)3 ]∣HF⟩, i = 1, 2, (B3a)

εµ3δt
(3)
µ3 = −

3
∑

j=1
⟨µ3∣[Φ

∗T ,δT(2)j ]∣HF⟩, (B3b)

2
∑

j=1
∑

νj
JCCSD
µiνj δt(4)νj = −⟨µi∣[Φ

∗T ,δT(3)3 ]∣HF⟩

− ⟨µi∣[[Φ
∗T ,δT(2)1 ],δT(1)3 ]∣HF⟩δi2, i = 1, 2,

(B4a)

εµ3δt
(4)
µ3 = −

3
∑

j=1
⟨µ3∣[Φ

∗T ,δT(3)j ]∣HF⟩

− ⟨µ3∣[[Φ
∗T ,δT(2)],δT(1)]∣HF⟩. (B4b)

2
∑

j=1
∑

νj
JCCSD
µiνj δt(5)νj = −⟨µi∣[Φ

∗T ,δT(4)3 ]∣HF⟩

−
1
2
⟨µi∣[[Φ

∗T ,δT(2)],δT(2)]∣HF⟩

− ⟨µi∣[[Φ
∗T ,δT(3)],δT(1)]∣HF⟩, i = 1, 2.

(B5)
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