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Abstract Using test-particle simulations, we describe (in 2-D) the interaction of an ensemble of
electrons with a discrete whistler-mode wave packet, which propagates with a moderate wave-normal
angle with respect to the background magnetic field. We evaluate both the average transport coefficients
used in quasi-linear diffusion transport and also the full nonlinear wave-particle interactions. The magnitude
of the calculated diffusion coefficients is found to increase proportionally to the wave amplitude squared,
in agreement with quasi-linear diffusion theory. Cyclotron resonance of counterstreaming electrons
(n = 1 harmonic number) is more important for pitch angle scattering than Landau resonance. Landau
resonance of costreaming electrons (n = 0) is comparable to cyclotron resonance for energy diffusion and
advection. Strong acceleration of high pitch angle, costreaming electrons arises in nonlinear wave-particle
interactions with high-amplitude waves. In our simulations with zero parallel electric field, the energy
source for electron acceleration is the wave’s perpendicular electric field, in both the cyclotron and Landau
resonances. The Landau resonance can happen even with zero parallel electric field, if the wave packet
propagates with a finite wave-normal angle. This resonance between the particle’s azimuthal velocity and
the wave fields leads to trapping and substantial parallel acceleration.

Plain Language Summary We present a detailed analysis on how an individual plasma wave
packet interacts with electrons trapped in the Earth’s Van Allen radiation belts. The waves are in the so-called
whistler mode, where both the wave fields and the electrons rotate around the background magnetic field
lines at comparable frequencies, leading to substantial interaction between the two. In this investigation,
we quantify both the average effect on a large group of particles and also the strong interactions that may
happen with a selected few. Our results help quantifying how waves in the whistler mode contribute to
the population balance of the radiation belts and especially how they can accelerate trapped electrons
to high energies.

1. Introduction

Outside the plasmasphere, the Earth’s magnetosphere is essentially a collisionless plasma, where the dynamic
changes in the population balance are controlled by wave-particle interactions. Whistler-mode chorus is one
of the most important wave types controlling the fluxes of the Earth’s radiation belt electrons, because it can
lead to both rapid local energization and loss of trapped electrons (Thorne, 2010). The electric and magnetic
field fluctuations in these right-hand circularly polarized plasma waves rotate at an angular frequency𝜔 in the
same direction as electrons trapped in the radiation belts, and 𝜔 is a fraction of the electron gyrofrequency
Ωe. Additionally, their phase and group velocities are comparable to the parallel velocity of electrons in the
hundreds of eV up to hundreds of keV energy ranges. All of these factors make chorus waves efficiently interact
with trapped electrons and play a key role in the population balance of the radiation belts (Shprits et al., 2008;
Thorne, 2010).

Basic linearization of the Vlasov equation indicates that the interaction between stochastic whistler-
mode waves and electrons is significant only if the following resonance condition is met (Kennel &
Engelmann, 1966):

𝜔 − k∥v∥ = n
Ωe

𝛾
(1)
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where n = 0,±1,±2,…. is the harmonic number, k∥ is the parallel wave number, v∥ is the electron parallel
velocity, and 𝛾 = 1∕

√
1 − v2∕c2 is the Lorentz relativistic factor. For waves propagating nearly parallel to the

background magnetic field, the dominant wave-electron interactions come from the n = 1 resonance. In
the frame of reference moving with the electron’s guiding center, the wave is doppler shifted to the rela-
tivistic gyrofrequency Ωe∕𝛾 . For lower energies (where 𝛾 < Ωe∕𝜔) the n = 1 resonance is met for electrons
counterstreaming with the waves, while for MeV energies the condition is met for costreaming electrons
and waves.

Typically, wave-particle interactions in the Earth’s radiation belts are characterized in the framework of
quasi-linear diffusion theory (Albert, 2005; H. S. Fu et al., 2011, 2012; Summers, 2005; Summers et al., 1998).
Quasi-linear diffusion theory is built on the fact that electrons interacting with low- to moderate-amplitude
broadband waves undergo several small scatterings that collectively amount to diffusion in energy and
pitch angle. The approach is to solve the Fokker-Planck equation, with diffusion coefficients dependent on
the wave distribution, to obtain the evolution of the electron phase-space density (Summers, 2005). This strat-
egy has been successful for describing long-term (>10 hr) changes in the radiation belt fluxes (Li et al., 2007;
Thorne et al., 2013) but has failed to explain faster dynamics (Agapitov et al., 2015).

However, at sufficiently large wave amplitudes, wave-particle interactions can switch from stochastic to
deterministic, giving rise to nonlinear phenomena that cannot be described by quasi-linear diffusion theory
(Albert, 2002; Bortnik et al., 2008; Omura & Summers, 2006; Omura et al., 2007). One such example is particle
phase trapping, where a particle is trapped by (and moves along with) the wave in a substantial fraction of its
bounce orbit, leading to significant energy and/or pitch angle changes (see, e.g., Bortnik et al., 2008, Figure 2i).
Besides high amplitude, other characteristics of chorus that correlate with nonlinear interactions are as fol-
lows: its discrete coherent (almost monochromatic) structure, frequency rising tone, and oblique propagation
(Agapitov et al., 2014; Hsieh & Omura, 2017; Omura & Summers, 2006).

Test-particle simulations to characterize the role of nonlinear wave-particle interactions have usually been
performed with 1-D models (where the spatiotemporal evolution of wave fields is prescribed along the mag-
netic field line) using either gyroaveraged equations of motion (Bortnik et al., 2008; Hsieh & Omura, 2017;
Omura & Summers, 2006; Omura et al., 2007; Zheng et al., 2012) or Hamiltonian analysis (Agapitov et al.,
2014; Albert, 2002; Artemyev et al., 2013). Some investigations have characterized wave-particle interactions
between electrons and wave fields from self-consistent particle-in-cell (or hybrid) simulations but also often in
1-D (Hikishima et al., 2010; Katoh & Omura, 2007). A 2-D investigation in cartesian coordinates was undertaken
by Drake et al. (2015).

In this work we characterize wave-particle interactions between electrons and a 2-D whistler-mode wave
packet that is generated from a self-consistent simulation in a dipolar magnetic field geometry (da Silva et al.,
2017; Wu et al., 2015). The wave fields are excited from temperature anisotropy of tens of keV ring-current
electrons and are representative of lower band chorus. They form a discrete wave packet that evolves as a
function of time and position along the field line and naturally has a finite perpendicular wavelength. We
track an ensemble of electrons, distributed over all pitch angles and energies between 5 and 500 keV, as
they interact with this discrete wave packet. We demonstrate that this approach can replicate key results
from quasi-linear diffusion theory and also provide a detailed description of full nonlinear wave-particle inter-
actions. We quantify the importance of cyclotron and Landau resonances for both pitch angle and energy
diffusion, emphasizing the effects of increasing wave amplitude. We also describe the interaction of individ-
ual particles with the wave packet, demonstrating that the wave’s perpendicular electric field can lead to
energization in both Landau and cyclotron resonances.

2. Methodology
2.1. Hybrid Simulations of a Discrete Whistler-Mode Wave Packet
Two-dimensional simulations are performed using a hybrid fluid/particle-in-cell computer simulation model,
which was first developed for investigations of electromagnetic ion cyclotron waves (Denton et al., 2014; Hu
& Denton, 2009; Hu et al., 2010), and further extended to studies of whistler-mode waves (da Silva et al., 2017;
Wu et al., 2015). The model treats the hot, anisotropic (i.e., ring current) electron population as particles, and
the background (i.e., cold) electrons as an inertialess fluid. The total electron density (equal to the ion density)
is 3.8 cm−3, and the breakdown between hot (treated as particles), warm (particles), and cold (fluid) species is
6%, 10%, and 84%, respectively. The ratio between the plasma and cyclotron frequencies is 𝜔pe∕Ωe0 = 3.48.
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Figure 1. (a) The dipolar (q, r, 𝜙) coordinate system used in this study, where q is a measure of length along the field line, r = L∕L0 is a normalized L shell, and 𝜙 is
the azimuthal angle (into the plane). (b–d) Characteristics of the simulated whistler-mode waves as a function of position along field line and time. (b) Wave
amplitude Bw. (c) Wave frequency 𝜔. (d) Wave-normal angle 𝜃. The wave frequency and wave-normal angle are calculated with a moving fast Fourier transform of
the complex signal S = Bw,r + iBw,𝜙, along the central field line. The black lines are added to guide the eye to the region of highest wave power. In the right
vertical axis we show the latitude at the central field line. MLAT = magnetic latitude.

The hot electrons have 15-keV parallel and 45-keV perpendicular temperatures. These input parameters are
representative of observations (see, e.g., Fu et al., 2014). The detailed initial conditions of the simulations were
presented in a previous publication (da Silva et al., 2017, Table 1 and Figure 4).

The background cold electron fluid population is evolved with electron MHD equations, while the particles
respond to the Lorentz force. All equations are solved in a meridional plane in a coordinate system (q, r, 𝜙) that
follows the curvature of the Earth’s dipolar magnetic field between the equator (where we apply a symmetry
boundary condition) and 30∘ latitude (as shown in Figure 1a). Owing to limitations in computational resources,
we simulate a system that is a factor of 12.8 times smaller than the region of interest at L0 = 5.5. Although
all other plasma parameters used here are realistic, the increased ratio between the Larmor radius and the
magnetic field radius of curvature (by a factor of 12.8) introduces quantifiable effects in the analysis, which
are discussed in section 3.

The plasma parameters listed above produce a high linear growth rate (0.033Ωe0) that produces waves with
large amplitude. Thus, we rescale the wave amplitude to any desired value through a four-step technique.
First, we calculate the background equilibrium magnetostatic field ⟨B⃗⟩t through a time average, followed
by k-space lowpass filtering. Second, a temporary wave field variable is defined as B⃗

∗
w ≡ B⃗ − ⟨B⃗⟩t . Third,

the wave amplitude is rescaled as B⃗w = B⃗
∗
w 10−4∕max(B∗

w,𝜙
), where in this case the desired wave amplitude
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is Bw = 10−4B0, and B∗
w,𝜙

is the component of B⃗
∗
w in the 𝝓̂ direction (the magnetic field here is normalized to

the equatorial value in the central L shell B0 = 180 nT). Fourth, the total field is defined as B⃗ = B⃗dip + B⃗w, where
B⃗dip is the Earth’s dipolar magnetic field. A similar scaling is done to the electric field, although it does not
have an equilibrium component. In our simulations the high linear growth rate also appears to dominate over
nonlinear growth processes that can cause rising tones; thus, the wave packet has approximately the same
frequency content throughout the entire simulation time span (Figure 1c).

Figures 1b–1d show the characteristics of the generated whistler-mode wave packet: It is a discrete packet
excited at the equator (compare Figure 1b to the coordinate system in Figure 1a); it is relatively broadband,
with strong power in the frequency range between 0.3 and 0.5 Ωe0, peaking at ∼0.4 Ωe0; the amplitude grows
with time and latitude; the packet is initially almost parallel to the background magnetic field (𝜃 ≃ 7∘); but as
it propagates to higher latitudes, its wave-normal angle turns towards higher L shells (increasing up to ∼40∘).

2.2. Test-Particle Simulations
In order to characterize wave-particle interactions, test-particle simulations are performed with electrons
traversing the whistler-mode wave packet shown in Figure 1. The test-particle initial distribution is uniform
in energy from 5 to 500 keV, approximately uniform in equatorial pitch angle, and distributed evenly in the
simulation domain (q, r). The test electrons are evolved using the relativistic Lorentz force equation:

dx⃗
dt

= v⃗ , (2)

m
d(𝛾 v⃗)

dt
= −e

[
E⃗w + v⃗ ×

(
B⃗dip + B⃗w

)]
, (3)

where −e,m, x⃗, and v⃗ are the particle’s charge, mass, position, and velocity, while E⃗w, B⃗w, and B⃗dip are the
wave electric, wave magnetic, and background magnetostatic fields interpolated to the particle’s position,
respectively. The position and velocity of over 7 million particles are tracked using the Boris algorithm (Birdsall
& Langdon, 1985, pp. 61–63). Equations (2)–(3) are solved in 3-D Cartesian coordinates (x, y, z) with fields
rotated from the hybrid code curvilinear coordinates to avoid effects of fictitious forces due to the curved
frame of reference (q, r, 𝜙).

To investigate the efficiency of this wave packet in causing pitch angle scattering and acceleration of radiation
belt electrons, we calculate the pitch angle and energy diffusion coefficients, respectively, as

D𝛼𝛼 ≡

⟨Δ𝛼2
eq⟩

2Δt
, DKK ≡

⟨ΔK2⟩
2Δt

, (4)

and also the respective advection coefficients as

A𝛼 ≡

⟨Δ𝛼eq⟩
Δt

, AK ≡

⟨ΔK⟩
Δt

, (5)

where Δ𝛼eq is the change in equatorial pitch angle 𝛼eq = cos−1(
√

1 − v2
⟂Beq∕v2B) and ΔK is the change

in energy K = (𝛾 − 1)mc2, where v and v⟂ are the particle’s total and perpendicular velocities, respectively,
while c is the speed of light in vacuum. Following Anderson et al. (1997), we evaluate the local and equa-
torial magnetic fields, B and Beq, at the particle’s guiding center position. The average ⟨ ⟩ is performed
over binned particles of similar initial 𝛼eq and K . Since the electrons are distributed all over the meridional
plane in L and magnetic latitude (MLAT), the coefficients defined above represent bounce-averaged values.
The coefficients Dii and Ai , in the ith direction, as defined in equations (4)–(5) are the transport coeffi-
cients appearing in the Fokker-Planck equation. The Ai coefficients may be best interpreted as a measure of
the total distribution drift in velocity space, which also has a contribution arising from the gradient of the
diffusion coefficient.

3. Results and Discussion

The test particles traverse the whistler-mode wave fields generated from a self-consistent simulation but
rescaled to have maximum amplitudes between 10−4 and 10−1B0, ranging from typical amplitudes observed
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in the Earth’s magnetosphere (e.g., Li et al., 2011) to some of the highest amplitudes observed (e.g., Cattell
et al., 2008; Wilson et al., 2011). We have evaluated the inhomogeneity ratio R (Omura et al., 2007, equation
(11); Albert & Bortnik, 2009, equation (5)) for our simulation parameters. A value |R| < 1 indicates conditions
where nonlinear wave-particle interactions may arise (Albert & Bortnik, 2009). The wave amplitudes chosen
in this paper are such that for Bw = 10−4B0, |R| ≫ 1 (i.e., fully linear dynamics), while for Bw = 10−1B0, |R| ≪ 1
(i.e., prone to nonlinear behavior), for most values of equatorial pitch angle in the energy range studied. The
amplitude Bw = 10−2B0 represents an intermediate scenario where only particles with high equatorial pitch
angles may display nonlinear behavior.

The first two rows in Figure 2 show the calculated pitch angle (a–d) and energy (e–h) diffusion coefficients.
The lower/upper half of each panel shows costreaming/counterstreaming electrons, as labeled in the right
vertical axis. From left to right, the reader can see the effect of increasing wave amplitude, from 10−4 (a, e)
to 10−2 (b, c, f, g) and finally to 10−1B0 (d, h). The color scale is proportional to B2

w, making panels (b) through
(d) and (e) through (h) look similar, as predicted by quasi-linear diffusion theory (e.g., Summers, 2005).
The exception is panel (a), for reasons discussed below. It is easy to see, by comparing D𝛼𝛼 in panels (a)–(d)
with the overlaid resonance curves, that pitch angle diffusion is largely dominated by the n = 1 (cyclotron)
and n = 0 (Landau) resonances. The resonance curves are calculated using equation (1), assuming that waves
propagate with a constant frequency𝜔 = 0.4Ωe0, with the wave number k varying according to a cold plasma
linear dispersion equation, and assuming that the wave-normal angle evolves as 𝜃 ≃ 7∘ +0.65×MLAT, which is
a linear fit to the trend shown in Figure 1d (we note that a similar linear trend has also been inferred from cho-
rus statistical analysis, but with a different proportionality coefficient 𝜃 ≈ 2× MLAT; Agapitov et al., 2013). In
panels (b) and (f ), the resonance curves emphasize the effect of MLAT, showing that the dominant interactions
happen for n = 0, 1 between 0∘ and 20∘ latitude.

In Figure 2, panels (a), (b), (e), and (f ) on the left and (c), (d), (g), and (h) on the right show the effect of select-
ing a longer and shorter time range Δt for calculation of diffusion coefficients, respectively. By contrasting
panels (b) and (c) we can see that the high-diffusion patches for costreaming electrons in panel (b) (located
at around 𝛼eq ≈ 60∘ and K = 100–200 keV, and close to 0∘ and 50–150 keV) disappear in panel (c) where a
shorter time interval is used. Detailed analysis of individual particle trajectories shows that the two patches
in panel (b) result from particles that are initially propagating poleward, reflect towards the equator by the
magnetic mirror force, and interact with the waves via counterstreaming cyclotron resonance. This effect is
reduced using a shorter time interval, as shown in panel (c). In panels (c), (d), (g), and (h) we show the resonance
curves for n = −1, 0, 1, 2 at a selected latitude (MLAT = 7.5∘) where the peak wave power is approximately
located in the time interval 250–300 Ω−1

e0 . Once more, the comparison between the resonance curves and
diffusion coefficients shows that wave-particle interactions are largely dominated by the first cyclotron and
Landau resonances.

One prominent feature in Figures 2a and 2c that does not align with the resonance curves can be seen in the
top- and bottom-right corners. The high pitch angle diffusion rate in those two regions is due to a combination
of the enhanced curvature of our system (because we simulate a 12.8-times scaled-down version of the mag-
netosphere) and the short simulation time. Going from left to right in Figure 2, we can see that the relatively
high diffusion in those two regions is alleviated by both increasing Δt and the wave amplitude. The reason
why this effect arises for particles with high energy and low pitch angle (i.e., high parallel velocity) is well cap-
tured by the parameter 𝜂, described by Anderson et al. (1997, equation (3)). The parameter 𝜂 = 2𝜋v∥𝛾∕Ωe∕Rc

is the ratio between the parallel distance travelled along the field line in one gyroperiod (2𝜋v∥𝛾∕Ωe) and
the radius of curvature of the magnetic field (Rc). The higher 𝜂 is, the more likely we are to see the onset of
nonadiabatic particle motion giving rise to field-line curvature scattering (Anderson et al., 1997; Young et al.,
2002). Note that 𝜂 = 2𝜋𝜀 cot(𝛼eq) ∝ 𝜀, where 𝜀 = 𝜌L∕Rc is the more familiar ratio between the Larmor radius
(𝜌L) and the radius of curvature of the magnetic field. The nonresonant diffusion shown in the bottom- and
top-right corners of Figures 2a and 2c is due to the neglect of higher-order terms in the first adiabatic invari-
ant (Young et al., 2002, equations (A1)–(A2)), which are stronger when 𝜂 is large. These numerical errors are
illustrative of the effects of choosing different test-particle simulation intervalsΔt: With a longerΔt one could
track the particles to their mirror points and evaluate 𝛼eq with minimal error (e.g., Anderson et al., 1997), but
equations (4)–(5) only represent Fokker-Planck transport coefficients in the limit that Δt is small. Remark-
ably, these inaccuracies do not result in energy changes, as shown in panels (e)–(h). We have performed
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Figure 2. Pitch angle diffusion (a–d), energy diffusion (e–h), and energy advection (i–l) coefficients as a function of equatorial pitch angle and kinetic energy.
Wave amplitudes are 10−4 (a, e, i), 10−2 (b, c, f, g, j, k), and 10−1B0 (d, h, l). Simulation time interval spans 250 to 450 Ω−1

e0 (a, b, e, f, i, j) and 250 to 300 Ω−1
e0

(c, d, g, h, k, l). The overlaid curves mark the resonance condition calculated from equation (1) and are labeled according to harmonic number (n) and magnetic
latitude (MLAT). See text for details. Vertically aligned panels have the same wave amplitude, simulation time interval, and resonance curves.

a simulation run without the wave fields (i.e., Bw= 0, shown in the supporting information Figure S3), which
produces a finite D𝛼𝛼 equivalent to the one shown in Figure 2a, but no energy diffusion (DKK = 0). This
demonstrates that the effects described in this paragraph are not attributed to the wave fields.

The striking similarity between panels (e)–(h) in Figure 2 indicates that the energy diffusion coefficients scale
as∝ B2

w, as predicted by quasi-linear diffusion theory (e.g., Summers, 2005). Energy diffusion is comparable for
both costreaming and counterstreaming particles, while pitch angle diffusion is significantly more important
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in the latter case. Averaging over the energy range shown in Figure 2 reveals that pitch angle diffusion peaks
at 0∘ for counterstreaming particles. Contrastingly, energy diffusion is maximum at ∼60∘, with two compa-
rable peaks for costreaming and counterstreaming particles, where the (n = 0, 1) resonance curves become
horizontal, that is, become weakly dependent on energy. Averaging over pitch angles reveals the trend that,
at high energies, diffusion coefficients D𝛼𝛼 and DKK∕K2 decrease as∝ 1∕𝛾2, also in agreement with quasi-linear
diffusion theory (comparing to equations (17) and (19) of Summers, 2005).

We have also calculated advection coefficients according to equation (5). Panels (i)–(l) in Figure 2 show the
energy advection AK∕K , indicating that, on average, counterstreaming particles above/below the n = 1 reso-
nance curve and costreaming particles above/below the n = 0 resonance curve are accelerated/decelerated.
Regarding pitch angle changes (the pitch angle advection coefficient is not shown for the sake of brevity,
but see Figure S5), we obtain the intuitive result that particles close to 90∘ have reducing pitch angles, while
counterstreaming particles above the n = 1 and costreaming below the n = 0 resonance curves have increas-
ing pitch angles. These advective pitch angle and energy changes tend to transport the particles towards the
resonance curve (see also Liu et al., 2012), which further increases advection rates in a nonlinear feedback pro-
cess. Note that quasi-linear theory predicts that the advection coefficients shown in Figures 2i and 2j should
be qualitatively similar to each other and only differ by a constant multiplying factor ∝ B2

w, similar to the dif-
fusion coefficients shown in Figures 2e and 2f. Nonetheless, we find that at low wave amplitudes, there is no
advection and the calculated coefficient is dominated by particle noise (Figure 2i), while at high wave ampli-
tudes, there is strong advection for particles near the resonance curves (Figure 2l). We attribute this result
to the nonlinear feedback mechanism described above, with an important consequence being the strong
acceleration of costreaming electrons with high equatorial pitch angles (see Figure 2l).

According to Albert (2002), the energy changes arising from phase bunching have the same sign as −dB∕dq,
where q is the coordinate position along the magnetic field line. For wave packets starting at the equator and
propagating to higher latitudes, such as in our simulation, the energy changes should be negative. Albert
(2002) also asserts that, typically, particles with large pitch angle and low energy are prone to experiencing
phase bunching. These two points combined have led us to interpret the blue patch in Figure 2l as due to
phase bunching. On the other hand, the positive energy changes for costreaming particles with high equa-
torial pitch angle, in the same figure, are attributed to phase trapping and are discussed in detail below in
context of the panel P4 of Figure 3. An attempt to estimate the linear and nonlinear contributions to the total
advection coefficient is made on the supporting information manuscript.

To better understand the wave-particle interactions, we have analyzed individual particle trajectories. We
selected two particles from the data in Figure 2d (Bw = 10−1B0), each having the highest |Δ𝛼eq| in the regions
marked as P3 and P4. We also ran these particles through lower-amplitude waves (Bw = 10−2B0), marked as
P1 and P2 in Figure 2c. The temporal evolution of parameters associated with these four particles is shown in
Figure 3 in panels labeled P1–P4. The subpanels show the (a) equatorial pitch angle 𝛼eq with scale on the left
vertical axis and energy with scale on the right, (b) components of wave magnetic field Bw , (c) wave electric

field Ew , and (d) rate of energy gain v⃗ ⋅ F⃗ with scale on the left axis and perpendicular velocity v⟂ =
√

v2
r + v2

𝜙

with scale on the right. Subpanels (e, f, g) show the forces (Fq, Fr, F𝜙) with scale on the left vertical axis and
velocities (vq, vr, v𝜙) with scale on the right in the (q̂, r̂, 𝝓̂) directions, respectively. The curvilinear coordinate
system (q, r, 𝜙) is shown in Figure 1a. The fields Bw and Ew are expressed in units of 10−3B0 and 10−3cB0, respec-
tively. The rate of energy gain is expressed in units of 10−3ec2B0. The forces are expressed in units of 10−3ecB0,
and the velocities in terms of c. We also show the net energy gain and the net force as a yellow solid area in
the background of subpanels (d) and (e–g), respectively.

Particles/panels P1 and P3 in Figure 3 show the cyclotron resonance. Particles P1 and P3 propagate towards
the equator; their initial and final latitudes are shown in subpanels (a). It is easy to see in panels P1f and P1g that
the particle’s perpendicular velocity components, vr and v𝜙, resonate with the forces (in Lorentz equation (3))
pointing in those respective directions during the interval t = 250 to 270Ω−1

e0 . The resonance condition is met
because the particle is counterstreaming against the wave propagation direction at sufficiently low velocity
such that, in the Lagrangian frame of reference, the wave frequency is doppler shifted up to the cyclotron
frequency. During this interval, the perpendicular electric field acts as an energy source for the acceleration
(panel P1d). The magnetic force from the wave tends to reduce parallel velocity (panel P1e) and increase the
perpendicular one (P1f and P1g). The net effect is perpendicular acceleration that leads to 𝛼eq and K increas-
ing concurrently (P1a). The difference for particle P3 (with a stronger wave amplitude) is that the interaction

DA SILVA ET AL. 5240



Geophysical Research Letters 10.1029/2018GL077877

Figure 3. Panels P1–P4 show the temporal evolution of several quantities for four selected particles. The subpanels show (a) equatorial pitch angle 𝛼eq and

energy, (b) components of wave magnetic field Bw , (c) wave electric field Ew , and (d) rate of energy gain v⃗ ⋅ F⃗ and perpendicular velocity v⟂ . Subpanels (e, f, g)
show the forces (Fq, Fr , F𝜙) and velocities (vq, vr , v𝜙) in the (q̂, r̂, 𝝓̂) directions, respectively. See text for units of quantities in subpanels (b–g). Solid lines
correspond to the left-side vertical axis, while dashed lines correspond to the right-side axis. The keys to the line colors and styles are given in panel P2 and are
the same in the four panels.
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lasts longer, up to t = 300 Ω−1
e0 (panels P3f and P3g). This happens because the parallel deceleration due to

the wave force Fq is strong enough to compensate for the mirror force, the velocities vr and v𝜙 get locked to
the wave phase (the phase trapping can be seen in panels P3f and P3g), and the particle is decelerated almost
to a stop (panel P3e).

This publication is accompanied by four supporting information movie animations (Movies S1–S4) that show
the electrons P1–P4 propagating through the whistler-mode wave fields. These movies aid the visualiza-
tion of the wave-particle interactions described in the context of Figure 3. Please refer to the accompanying
supporting information manuscript for a detailed description of the movies.

Particles/panels P2 and P4 in Figure 3 show the Landau resonance. Particles P2 and P4 propagate towards the
pole; their initial and final latitudes are listed in subpanels (a). Particle P2 and the wave packet are costreaming
at approximately the same velocity, which causes the particle to “see” roughly constant wave fields (panels
P2b and P2c, during the first ∼3 gyroperiods). This brief interaction leads to a small reduction in equatorial
pitch angle and increase in energy (panel P2a) due to a net parallel force (panel P2e). The net parallel force
is not strong enough to counterbalance the mirror force and vq decreases during the interaction interval
(panel P2e). The difference for particle P4 (with a stronger wave amplitude) is that the particle is dragged along
by the wave packet. As both particle and wave packet reach higher latitudes, the wave overtakes the particle
because its phase velocity increases roughly as ∝

√
B∕B0 and the mirror force tends to reduce the particle’s

parallel velocity as ∝
√

1 − sin2(𝛼eq)B∕B0. As particle P4 starts to lag behind, and the particle’s guiding center
position aligns with a zero value of the wave field, a new feature of the Landau resonance arises, which is only
possible due to the finite wave-normal angle (or finite component of wave vector k⟂). When the particle P4’s
guiding center is in Landau resonance with a wave node, and the wave fronts are tilted with respect to the
parallel direction q̂, there is automatically a resonance of the azimuthal velocity (v𝜙) of the particle at the radial
limits of the gyromotion with the azimuthal electric field (as shown in panel P4g), responsible for energiza-
tion (P4d, green line), and the radial magnetic field, responsible for dragging the particle along (P4e, green
line). The particle trapping lasts up to t = 310 Ω−1

e0 , amounting to significant parallel acceleration, which is
reflected in the energy gain and pitch angle decrease shown in panel P4a.

Figure 4 and Movie S4 further illustrate this interaction. Figure 4 shows particle P4’s trajectory overlaid on the
wave fields. The Landau-k⟂ resonant acceleration shown in Figure 4 is self-induced by the gyromotion. If a
resonant particle’s gyrocenter remains at a node of the azimuthal electric field and radial magnetic field, the
particle’s azimuthal velocity will automatically resonate with those wave field components as long as there is
a finite k⟂ value. The interaction is optimal if the perpendicular wavelength is ∼4𝜌L, where 𝜌L is the relativis-
tic electron gyroradius, but also occurs if the perpendicular wavelength is larger. This assertion can also be
understood from analysis of the gyroaveraged equations of motion. From equation (A7) in Liu et al. (2011),
the quasi-linear pitch angle diffusion coefficient due to Landau resonance comes from two parts: one propor-

tional to E⟂J1 and another proportional to E∥J0, here E∥ = Ew,q and E⟂ =
√

E2
w,r + E2

w,𝜙
. The argument of the

Bessel functions J1 and J0 is k⟂𝜌L. So, if E∥ is zero, the transverse electric field can still contribute to the scatter-
ing when k⟂ is not zero. The scattering peaks when J1 peaks. The first peak of J1 occurs when k⟂𝜌L ≈ 1.8. This
leads to an optimal perpendicular wavelength of (2𝜋∕1.8)𝜌L ≈ 3.5𝜌L. This number is close to the 4𝜌L esti-
mate above. However, the net effect of the interaction is complex due to particle trapping at the resonance,
as discussed below.

It can be seen from Figures 4a and 4b that v𝜙 has the same sign as Bw,r on both sides of the particle’s orbit,
leading to a net force ev𝜙Bw,r pointing in the+q̂ direction, which is responsible for dragging the particle along
with the packet. At the same time, the particle is energized. The energy source for the acceleration is the wave
perpendicular electric field, as is evident in Figures 4c and 4d because v𝜙 and Ew,𝜙 have opposite signs on both
sides of the orbit (thus, v⃗ ⋅ F⃗𝜙 = −ev𝜙Ew,𝜙 is positive). The net effect is particle trapping at the resonance and
strong parallel acceleration. This parallel acceleration can cause precipitation into the atmosphere of energetic
electrons that are initially far from the loss cone. The precipitation happens in the same hemisphere as the
waves and correlates temporally with the lifetime of the wave packet. This mechanism may contribute in part
to explain the origin of the short-lived (i.e., bursty), tens to hundreds of keV energetic precipitation, known as
microbursts (Millan & Thorne, 2007, and references therein). This type of resonant interaction is important in
magnetosonic waves, which propagate quasi-perpendicular to the magnetic field line and only interact with
electrons via Landau resonance (Liu et al., 2011). A similar interaction could also occur for equatorially trapped
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Figure 4. Landau-k⟂ resonance experienced by particle P4. Wave Bw,r (a, b) and Ew,r (c, d) fields at two different time instants t = 290.0Ω−1
e0 (a, c) and 293.5 Ω−1

e0
(b, d), about a half gyroperiod apart. The solid black line shows the total particle trajectory in the q-r plane. The circle and the triangle mark the instantaneous
position of the particle and guiding center, respectively. A circle with a dot (⊙) indicates that the particle’s v𝜙 velocity points out of the page, while a circle with a
cross (⊗) indicates that the particle is moving into the page.

(𝛼eq ≈ 90∘) electrons interacting with ion scale (effectively zero frequency) waves like electromagnetic ion
cyclotron waves, as long as the wave has finite amplitude and a perpendicular component of the wave vector
at the magnetic equator. This cannot occur using the symmetry boundary conditions that we have used in
this paper but could occur if that boundary condition is relaxed.

In our hybrid model the electromagnetic fields are evaluated from electron MHD equations (da Silva et al.,
2017, equations (1)–(3)). The electric field is obtained from a simplified Ohm’s law involving the cold elec-
tron population velocity u⃗ec, E⃗w = −u⃗ec × (B⃗dip + B⃗w), which predicts that the parallel electric field Ew,q is
very small, even when waves are propagating with a finite wave-normal angle. This feature is evident in sub-
panels (c) of Figure 3. Therefore, in the present work, the energization of all particles, shown in subpanels (d),
results from the wave’s perpendicular electric field, and the changes in velocity in the parallel direction are
entirely due to the wave’s perpendicular magnetic field components. According to Figure 3, the described
dynamics leads to parallel deceleration/acceleration in the cyclotron/Landau resonance cases. It is common
practice in the whistler-mode wave literature to characterize the effects of the Landau resonance in terms
of the parallel electric field (e.g., Agapitov et al., 2015; Artemyev et al., 2013). However, it can be seen from
the present work and even from analysis using the gyroaveraged equations that the wave’s perpendicular
electric field (at moderate wave-normal angles) plays a key role in electron energization via Landau reso-
nance (e.g., Hsieh & Omura, 2017, section 4.1; Liu et al., 2011, equation (A7); Shklyar & Matsumoto, 2009,
equation (3.46)).

4. Summary

In this paper, we presented test-particle simulations in which an ensemble of electrons, covering all pitch
angles and energies between 5 and 500 keV, interacts with a 2-D whistler-mode wave packet; such an
approach can retrieve both average transport coefficients used in quasi-linear diffusion theory and also the
full nonlinear wave-particle interactions. The magnitude of the calculated diffusion coefficients is found to
increase proportionally to the wave amplitude squared, in agreement with quasi-linear diffusion theory.
However, strong energy advection arises with increasing wave amplitude, evidencing an important nonlin-
ear effect. Cyclotron resonance of counterstreaming electrons (n = 1 harmonic number) is more important
for pitch angle scattering than Landau resonance. Landau resonance of costreaming electrons (n = 0)
is comparable to cyclotron resonance for energy diffusion and advection. The energy source for electron
acceleration is the wave’s perpendicular electric field in both the cyclotron and Landau resonances. Finally,
we thoroughly described how intense Landau parallel acceleration can happen even with zero parallel
electric field.
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