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We have developed a new krypton–krypton interaction-induced isotropic dipole polarizability curve
based on high-level ab initio methods. The determination was carried out using the coupled-cluster
singles and doubles plus perturbative triples method with very large basis sets up to augmented
correlation-consistent sextuple zeta as well as the corrections for core-core and core-valence corre-
lation and relativistic effects. The analytical function of polarizability and our recently constructed
reference interatomic potential [J. M. Waldrop et al., J. Chem. Phys. 142, 204307 (2015)] were used
to predict the thermophysical and electromagnetic properties of krypton gas. The second pressure,
acoustic, and dielectric virial coefficients were computed for the temperature range of 116 K–5000 K
using classical statistical mechanics supplemented with high-order quantum corrections. The virial
coefficients calculated were compared with the generally less precise available experimental data as
well as with values computed from other potentials in the literature {in particular, the recent highly
accurate potential of Jäger et al. [J. Chem. Phys. 144, 114304 (2016)]}. The detailed examination
in this work suggests that the present theoretical prediction can be applied as reference values in
disciplines involving thermophysical and electromagnetic properties of krypton gas. Published by
AIP Publishing. https://doi.org/10.1063/1.5006970

I. INTRODUCTION

The macroscopic properties of fluids depend on the micro-
scopic interactions between molecules and in principle they
can be calculated from them.1–4 In this way, with the help of
modern computational techniques, it is now possible to obtain
thermophysical properties of gases to high accuracy purely
from theory.5–12 This process involves two lengthy computa-
tions. At first, the potential energy curve V (R), where R is
the interatomic distance, is computed from first principles.
Then, V (R) is employed in expressions based on statistical
mechanics and kinetic theory of dilute gases to yield thermo-
physical properties. The best known example is the theoretical
results for helium9 which have uncertainties that are signifi-
cantly smaller (sometimes by nearly two orders of magnitude)
than those of the corresponding measured quantities. Standard
theoretical values of thermophysical properties are becom-
ing important for two areas: instrument calibration13–15 and
metrology.16–18 Other studies such as the development of ther-
modynamic and transport equations could also benefit from
more accurate thermophysical data (e.g., Refs. 19–21).

We have recently constructed a new pair potential for
krypton using coupled-cluster calculations up to the singles,
doubles, triples, and perturbative quadruples level, including
the corrections for core-core and core-valence correlation as
well as relativistic effects.10 Comparisons with the literature

a)B. Song and J. M. Waldrop contributed equally to this work.
b)E-mail: song.bo@xjtu.edu.cn
c)E-mail: patkowsk@auburn.edu

indicated that this potential is more accurate than any curve
published previously. In this work, we have used the new
potential together with classical statistical mechanics with
quantum corrections to compute some thermophysical prop-
erties of krypton gas: the second pressure virial coefficient B
and the second acoustic virial coefficient βa for the range of
115.78 K (the triple-point temperature of naturally abundant
krypton22) to 5000 K. The range of temperatures investigated
is wide enough for most scientific and engineering purposes.
In addition to thermophysical properties, the electromagnetic
properties of simple gases are also valuable for pressure and
temperature metrology.23 For these reasons, we have also cal-
culated the second dielectric virial coefficient Bε of krypton
using a semi-classical method for the same aforementioned
temperature range. The calculations of Bε require not only the
pair potential but also the interaction-induced isotropic dipole
polarizability ∆αave(R) of the weakly bound dimer.

The rest of the article is structured as follows. We present
in Sec. II the determination of the krypton–krypton interaction-
induced polarizability as well as its analytical representation
∆αfit

ave (R) and the expressions for the lower- and upper-limits
of its values. In Sec. III, our recent interatomic potential of
the weakly bound krypton dimer10 is briefly described for the
sake of completeness. Section IV provides the detailed for-
mulations for the computation of virial coefficients of krypton
gas and the procedure to evaluate the uncertainty of theoreti-
cally calculated values. Section V contains a comparison of the
experimental data and the values from some literature poten-
tials with the present calculated values for the virial coefficients
of krypton to assess carefully the performance of this work. It
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should be noted that, very recently, the Rostock group reported
their fourth reference potential for pure noble gas molecules,
namely, one for krypton,12 following ones for helium,6 neon,7

and argon.8 Jäger et al. used the best ab initio methods suitable
for krypton to develop the potential energy curve for the two-
body as well as the three-body interaction between krypton
atoms. In Sec. V, considerable attention is paid to the agree-
ment between the new ab initio potentials of Jäger et al.12 and
our work for the virial coefficients of krypton gas. Finally, we
summarize in Sec. VI the main conclusions and give some
perspectives of this work.

II. DEVELOPMENT OF INTERACTION-INDUCED
POLARIZABILITY

The interaction-induced isotropic pair polarizability (the
trace of the interaction-induced polarizability tensor)∆αave (R)
and its anisotropy ∆αaniso (R) of the krypton dimer were cal-
culated for the same interatomic distances as those used in
the development of our high-accuracy Kr–Kr potential energy
curve.10 All calculations employed the counterpoise correction
for the basis set superposition error.24 Specifically, ∆αave (R)
and ∆αaniso (R) are defined by

∆αave (R) =
1
3

[
∆α ‖ (R) + 2∆α⊥ (R)

]
, (1)

∆αaniso (R) =
[
∆α ‖ (R) − ∆α⊥ (R)

]
, (2)

∆α ‖ (R) = αdimer
‖

(R) − 2αmonomer
‖

(R) , (3)

∆α⊥ (R) = αdimer
⊥ (R) − 2αmonomer

⊥ (R) , (4)

where αdimer
‖

(R) and αdimer
⊥ (R) are the components of the

dimer polarizability that are parallel and perpendicular, respec-
tively, to the internuclear axis at a given interatomic dis-
tance R and αmonomer

‖
(R) and αmonomer

⊥ (R) are the corre-
sponding monomer components of polarizability calculated
in the dimer basis.8 All polarizabilities were calculated at the
coupled-cluster singles and doubles plus perturbative triples
[CCSD(T)] level and include corrections for core-core and
core-valence correlation (∆αAE−FC

ave ,∆αAE−FC
aniso ) and relativistic

effects (∆αrel
ave, ∆αrel

aniso) so that

∆αave = ∆α
CCSD(T)/FC
ave + ∆αAE−FC

ave + ∆αrel
ave, (5)

∆αaniso = ∆α
CCSD(T)/FC
aniso + ∆αAE−FC

aniso + ∆αrel
aniso. (6)

Calculations were performed using the CFOUR and MOL-
PRO codes.25–27 Augmented correlation-consistent Dun-
ning basis sets with X = D, T, Q, 5, 6 were used in all
calculations: they included the polarized valence series,

TABLE I. Frozen-core CCSD(T) components of the interaction-induced pair polarizability and all-electron and
relativistic corrections (a3

0) for the krypton dimer near van der Waals minimum (R = 4.0 Å), computed in augmented
Dunning basis sets aVXZ/aCVXZ/. . . as indicated.

X =

Component D T Q 5 6

α
CCSD(T)/FC
‖

/aVXZ 1.9897 2.5673 2.6037 2.6195 2.6246

α
CCSD(T)/FC
⊥ /aVXZ �0.9923 �1.2590 �1.2445 �1.2380 �1.2374

α
CCSD(T)/FC
‖

/aCVXZ 2.0051 2.5805 2.6031 2.6192

α
CCSD(T)/FC
⊥ /aCVXZ �0.9991 �1.2611 �1.2440 �1.2377

α
CCSD(T)/FC
‖

/awCVXZ 2.0440 2.5689 2.5998 2.6177

α
CCSD(T)/FC
⊥ /awCVXZ �1.0144 �1.2564 �1.2421 �1.2369

αAE−FC
‖

/aVXZ �0.0030 �0.0183 �0.0246 �0.0410

αAE−FC
⊥ /aVXZ 0.0015 0.0091 0.0121 0.0193

αAE−FC
‖

/aCVXZ �0.0077 �0.0357 �0.0472 �0.0559

αAE−FC
⊥ /aCVXZ 0.0042 0.0185 0.0240 0.0277

αAE−FC
‖

/awCVXZ �0.0237 �0.0439 �0.0541 �0.0596

αAE−FC
⊥ /awCVXZ 0.0120 0.0227 0.0272 0.0294

αRel
‖

/aVXZ �0.0469 �0.0167 �0.0160 �0.0165

αRel
⊥ /aVXZ 0.0251 0.0128 0.0143 0.0127

αRel
‖

/aCVXZ �0.0040 �0.0178 0.0066

αRel
⊥ /aCVXZ 0.0089 0.0137 0.0040

αRel
‖

/aCVXZ-DK 0.0237 0.0148 0.0117

αRel
⊥ /aCVXZ-DK �0.0030 0.0007 0.0014

αRel
‖

/decontracted aVXZ 0.0185 0.0128 0.0103

αRel
⊥ /decontracted aVXZ �0.0008 0.0015 0.0020
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aug-cc-pVXZ (aVXZ), polarized core and valence, aug-cc-
pCVXZ (aCVXZ), weighted core-valence, aug-cc-pwCVXZ
(awCVXZ), and aug-cc-pCVXZ recontracted for relativistic
calculations, aug-cc-pCVXZ-DK (aCVXZ-DK).12,28–32

An initial assessment of the basis sets and correc-
tions was performed on the same near van der Waals min-
imum distance as examined for the potential energy curve
(R = 4.0 Å). The results of this examination can be seen
in Table I. The uncertainty of a value in a particular basis
is defined as the difference between that value and the
corresponding result in the preceding basis. As such, the
frozen-core results converge well in the aV6Z basis with
values of 2.6246 ± 0.0051 a3

0 in the parallel component
and �1.2374 ± 0.0006 a3

0 in the perpendicular component.
Likewise, the core-core and core-valence correlation cor-
rection beyond the frozen-core approximation is reason-
ably well converged in the awCVQZ basis with values of
�0.0541 ± 0.0102 and 0.0272 ± 0.0045 a3

0 for the paral-
lel and perpendicular components, respectively. It was deter-
mined that a basis set increase to awCV5Z was unneces-
sary given the minor improvement and the overall small
size of the AE-FC correction. We have also checked if
higher-order coupled-cluster excitations are important for the
interaction-induced polarizability by performing a frozen-core
CCSDT calculation in the aVDZ basis set (using the ana-
lytical implementation in CFOUR). At R = 4.0 Å, the dif-
ference between the CCSDT and CCSD(T) results is 0.0023
a3

0 for the parallel component and �0.0003 a3
0 for the per-

pendicular component. Thus, the full triples correction to the
isotropic interaction-induced polarizability is just 0.0005 a3

0
at this distance and we did not consider this correction any
further.

The relativistic corrections were calculated analytically
using the exact two-component (X2C) method.33 This method
is available in CFOUR,34 though commented out in the pub-
lic release due to the lack of picture change effects on the
dipole moment operator. To validate the results obtained from
the analytical code with a slightly incomplete treatment of

FIG. 1. The parallel component of the interaction-induced pair polarizabil-
ity, ∆α‖ , as a function of electric field strength, E. AE denotes calculations
including core-core and core-valence correlation and no relativistic correction.
X2C and DKH denote calculations using the respective relativistic correction,
while FF denotes calculations using a finite field method. All calculations for
this test were performed in the decontracted aVTZ basis set.

relativity, we performed finite field calculations using the
CFOUR and MOLPRO programs. The α ‖ and α⊥ values
for the monomer and dimer were calculated as numerical
first derivatives of the analytical dipole moment (CFOUR)
and second derivatives of the total energy (MOLPRO) with
respect to a change in a uniform electric field. MOLPRO
calculations of the relativistic effects used the second-order
Douglas-Kroll-Hess (DKH) Hamiltonian, which provides an
alternative to the X2C results.35,36 As can be seen in Fig. 1, the
numerical and analytical results from CFOUR agree extraor-
dinarily well and the MOLPRO results provide satisfactory
agreement given the difference in methods. As a side note, it
was observed in the comparison of αdimer

‖
that the second-

order DKH correction was around twice that of X2C, as
shown in Fig. 2. This difference is small in absolute terms
and cancels out in ∆α ‖ but is difficult to rationalize on its
own. Due to the consistency between methods, the analytical
approach was used to calculate the correction. The decon-
tracted aVXZ results display the fastest basis set convergence,
so we took the decontracted aVQZ values as the preferred
ones, with values of 0.0103 ± 0.0025 a3

0 for the parallel
component and 0.0020 ± 0.0005 a3

0 for the perpendicular
component.

With the selection of the basis sets and levels of theory
defined above, the interaction-induced isotropic pair polariz-
ability ∆αave at the near van der Waals minimum separation
is 0.054 84 ± 0.002 97 a3

0, where the uncertainty is the square
root of the quadratic sum of the uncertainties of the contribut-
ing terms. This best level of theory was used to calculate
∆αave (R) and ∆αaniso (R) at 25 values of R from 2.6 Å to
12.0 Å. The ab initio values for each term and the total ∆αave

can be found in Table II, while the corresponding results for
∆αaniso are presented in Table SI in the supplementary mate-
rial. The near cancellation of ∆α ‖ and ∆α⊥ results in values
of ∆αave very close to zero, as found previously for the argon
dimer.8

Using a weighted least-squares routine,37 the total ∆αave

and ∆αaniso were fitted to functions with forms38–40

FIG. 2. The parallel component of the dimer polarizability,αDimer
‖

, as a func-
tion of electric field strength, E in atomic units. AE denotes calculations
including core-core and core-valence correlation and no relativistic correction.
X2C and DKH denote calculations using the respective relativistic correction,
while FF denotes calculations using a finite field method. All calculations for
this test were performed in the decontracted aVTZ basis set.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-009803
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-009803
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TABLE II. Contributions to the interaction-induced isotropic polarizability ∆αave for the krypton dimer, the total ∆αave, and the total uncertainty U(∆αave) in
units of a3

0. The column ∆αfit
ave contains the values obtained from the fitted expression in Eq. (7).

R (Å) ∆α
CCSD(T)/FC
ave ∆αAE−FC

ave ∆αRel
ave ∆αave U(∆αave) ∆αfit

ave

2.60 �0.175 174 733 �0.020 902 900 �0.018 060 067 �0.214 137 700 0.013 476 933 �0.215 636 912
2.80 �0.312 638 567 �0.005 541 267 �0.000 928 067 �0.319 107 900 0.009 993 667 �0.315 336 594
3.00 �0.281 941 933 0.001 092 167 0.007 473 133 �0.273 376 633 0.008 011 233 �0.275 332 625
3.20 �0.194 681 200 0.003 224 533 0.010 414 167 �0.181 042 500 0.006 781 333 �0.183 014 852
3.40 �0.103 253 400 0.003 155 233 0.010 266 100 �0.089 832 067 0.005 577 233 �0.090 066 202
3.60 �0.029 548 700 0.002 200 600 0.008 675 167 �0.018 672 933 0.004 612 133 �0.017 982 438
3.70 �0.001 491 533 0.001 632 867 0.007 680 067 0.007 821 400 0.004 163 500 0.008 577 516
3.80 0.020 769 433 0.001 080 300 0.006 668 133 0.028 517 867 0.003 739 100 0.029 166 655
3.90 0.037 696 533 0.000 574 767 0.005 693 933 0.043 965 233 0.003 341 767 0.044 415 041
4.00 0.049 917 100 0.000 134 167 0.004 791 967 0.054 843 233 0.002 974 000 0.055 068 809
4.06 0.055 279 367 �0.000 095 467 0.004 293 867 0.059 477 767 0.002 767 800 0.059 576 680
4.10 0.058 127 900 �0.000 233 867 0.003 981 600 0.061 875 633 0.002 636 067 0.061 897 302
4.20 0.063 029 633 �0.000 528 767 0.003 270 300 0.065 771 167 0.002 330 267 0.065 634 625
4.30 0.065 282 433 �0.000 754 633 0.002 658 400 0.067 186 200 0.002 053 967 0.066 946 194
4.40 0.065 480 967 �0.000 918 767 0.002 140 600 0.066 702 800 0.001 806 900 0.066 412 705
4.60 0.061 698 800 �0.001 094 300 0.001 352 633 0.061 957 133 0.001 390 300 0.061 690 744
4.80 0.054 859 900 �0.001 122 400 0.000 829 033 0.054 566 533 0.001 061 133 0.054 412 776
5.00 0.047 011 267 �0.001 061 200 0.000 494 000 0.046 444 067 0.000 805 967 0.046 414 633
5.50 0.029 333 767 �0.000 764 333 0.000 120 933 0.028 690 367 0.000 426 233 0.028 796 038
6.00 0.017 528 567 �0.000 483 733 0.000 025 867 0.017 070 700 0.000 284 100 0.017 116 974
7.00 0.006 518 233 �0.000 181 367 0.000 002 433 0.006 339 300 0.000 160 700 0.006 311 046
8.00 0.002 761 167 �0.000 075 567 0.000 001 467 0.002 687 067 0.000 077 867 0.002 671 768
9.00 0.001 315 300 �0.000 035 533 0.000 000 733 0.001 280 500 0.000 039 433 0.001 277 486
10.00 0.000 684 067 �0.000 018 533 0.000 000 700 0.000 666 233 0.000 019 700 0.000 666 128
12.00 0.000 223 933 �0.000 006 100 0.000 000 233 0.000 218 067 0.000 006 067 0.000 217 420

∆αfit
ave (R) =

(
A(ave)

R
+ B(ave) + C(ave)R + D(ave)R2

)
e−α

(ave)R

+
∑

n=6,8
fn

(
β(ave)R

) C(ave)
n

Rn , (7)

∆αfit
aniso (R) =

(
A(aniso)R + B(aniso)R2

)
e−α

(aniso)R

+
∑

n=3,6,8
fn

(
β(aniso)R

) C(aniso)
n

Rn , (8)

where f n(x) is the Tang-Toennies damping function41

fn (x) = 1 − e−x
∑n

k=0

xk

k!
. (9)

The weight for each ab initio point was the inverse square
of the uncertainty and the fitted functions pass within the
uncertainties of all calculated points. The ∆αfit

ave (R) function

has MUEσ = 0.140 and∆αfit
aniso (R) has MUEσ = 0.216, where

the mean unsigned error with respect to uncertainty (MUEσ)
is defined as

MUEσ =
1

NR

∑
R

|Fit (R) − Calc(R)|
U(Calc (R))

. (10)

In Eq. (10), Fit(R) is either∆αfit
ave (R) or∆αfit

aniso (R) and Calc(R)
is the corresponding ab initio value. The long range Cn terms
were fitted first to the data with R ≥ 8.0 Å assuming no damp-
ing, then frozen throughout the rest of the procedure. The
values of the fit parameters for ∆αfit

ave can be found in Table
III; analogous parameters for the polarizability anisotropy are
given in Table SII in the supplementary material.

Additionally, the upper- and lower-limit functions for
both ∆αfit

ave (R) (∆αfit,+
ave (R) and ∆αfit,−

ave (R)) and ∆αfit
aniso (R)

TABLE III. Parameters of the polarizability functions of ∆αfit
ave (R), ∆αfit,+

ave (R), and ∆αfit,−
ave (R) for the krypton

dimer in Eq. (7).

Parameter ∆αfit
ave(R) ∆αfit,+

ave (R) ∆αfit,−
ave (R) Units

A(ave)
�131 248.569 521 �144 967.965 213 �118 621.208 123 a4

0
B(ave) 80 067.715 588 87 897.681 211 72 838.349 627 a3

0
C(ave)

�15 649.670 075 �17 086.345 415 �14 319.251 185 a2
0

D(ave) 958.404 374 1 040.655 286 882.044 335 a0

α(ave) 1.336 794 1.348 786 1.324 710 a−1
0

β(ave) 0.857 610 0.867 624 0.845 646 a−1
0

C6
(ave) 27 649.313 556 109 817 28 401.128 468 681 782 26 897.498 643 404 404 a9

0
C8

(ave) 992 472.153 870 260 93 1 039 598.256 973 147 2 945 346.050 803 672 29 a11
0

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-009803
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(∆αfit,+
aniso (R) and ∆αfit,−

aniso (R)) were produced for the measure-
ment of the uncertainty of the corresponding functions and
the quantities derived from them. The functions ∆αfit,+

ave (R)
and ∆αfit,−

ave (R) were fitted to ∆αave + U (∆αave) and ∆αave

− U (∆αave) , respectively, using the same functional form
as ∆αfit

ave (R) , and the equivalent procedure was used for the
production of ∆αfit,+

aniso (R) and ∆αfit,−
aniso (R). The relation

∆αfit,− (R) < ∆αfit (R) < ∆αfit,+(R) (11)

is true for both quantities within the range of the fitted points
but not necessarily outside of this range. The MUEσ val-
ues of the functions ∆αfit,+

ave (R), ∆αfit,−
ave (R), ∆αfit,+

aniso (R), and

∆αfit,−
aniso (R) are 0.163, 0.119, 0.212, and 0.222, respectively.

The parameters for the upper- and lower-limit functions can be
found in Table III for∆αfit

ave and Table SII in the supplementary
material for ∆αfit

aniso.

III. POTENTIAL ENERGY CURVE

In our previous work,10 we developed a new krypton–
krypton interatomic potential based on high-level ab initio
calculations. The analytic potential energy curve, used in this
work in the same form, is given by

V (R) =

(
A + BR +

C
R

)
e−αR −

∑4

n=3
f2n(βR)

C2n

R2n
, (12)

where R ≥ 1.8 Å, A, B, C, α, β, C6, and C8 are the fit param-
eters and f 2n(x) denote the Tang-Toennies damping func-
tions,41 Eq. (9). To avoid unphysical behavior at short distances
(R < 1.8 Å), Eq. (12) is spliced continuously with a simpler
expression

V (R) =

(
Ash

R

)
e−αshR+βshR2

. (13)

In addition, we have constructed potentials V+(R) and
V�(R) by fitting the same expression as V (R) to E + U(E)
and E � U(E), respectively. Here, the uncertainty U(E) of
the potential energy E was inferred by a careful examination
of basis set convergence patterns.10 The potential of Ref. 10
was computed within the Born-Oppenheimer approximation
(which works extremely well for nuclei as heavy as krypton)
and is exactly the same for all isotopologues of the krypton
dimer. All fitted parameters in the analytical representations
of V (R), V+(R), and V�(R) are listed in Table IV.

TABLE IV. Parameters of the potential energy functions V (R), V+(R), and
V�(R) for the krypton dimer in Eqs. (12) and (13).

Parameter V (R) V+(R) V�(R) Unit

A 467.771 557 511.688 596.938 Eh

B �43.111 875 �45.622 �56.519 Eh · a0
�1

C �509.601 417 �787.134 �997.849 Eh · a0

α 1.566 575 1.558 1.572 a0
�1

β 4.083 794 1.832 1.285 a0
�1

C6 126.790 499 126.498 127.083 Eh · a0
6

C8 5268.109 217 5096.285 5439.933 Eh · a0
8

Ash 1296.0 1296.0 1296.0 Eh · a0

αsh 3.067 950 2.744 2.900 a0
�1

βsh 0.324 0714 0.239 0.280 a0
�2

IV. THEORETICAL EVALUATION OF VIRIAL
COEFFICIENTS

In this section, we calculate the second pressure, acous-
tic, and dielectric virial coefficients and estimate their
uncertainties.

A. Second pressure virial coefficient

We employ the classical statistical-mechanics formulas
with second-order or third-order quantum corrections to com-
pute the virial coefficients of krypton. The calculations of the
second pressure virial coefficient B by statistical mechanics
have been studied extensively and the explicit expressions
are presented in a large number of scientific publications (for
example, in Ref. 42). For the convenience of the reader, we
still list the details of the formulations necessary to compute
B up to the third-order quantum corrections,

B = Bcl + λBqm,1 + λ2Bqm,2 + λ3Bqm,3, (14)

where λ = ~2 β/12m, ~ = h/2π, and β = 1/kBT . m is the
relative molecular mass (83.798 for krypton in this work), h is
the Planck constant, kB is the Boltzmann constant,43 and T is
the temperature. In the case of a completely isotropic poten-
tial V (R) (no angular dependence), the classical and quantum
contributions can be written as follows:

Bcl = −2πNA

∫ ∞
0

[
exp (−βV ) − 1

]
R2dR, (15)

Bqm,1 = 2πNA

∫ ∞
0

(
βV ′

)2exp (−βV ) R2dR, (16)

Bqm,2 = −2πNA

∫ ∞
0

[
6
5
(
βV ′′

)2 +
12

5R2

(
βV ′

)2 +
4

3R
(
βV ′

)3
−

1
6
(
βV ′

)4
]
exp (−βV ) R2dR, (17)

Bqm,3 = 2πNA

∫ ∞
0

[
36
35

(
βV ′′′

)2 +
216

35R2

(
βV ′′

)2 +
24
21

(
βV ′′

)3 +
24
5R

(
βV ′

) (
βV ′′

)2 +
288

315R3

(
βV ′

)3

−
6
5
(
βV ′

)2 (βV ′′
)2
−

2

15R2

(
βV ′

)4
−

2
5R

(
βV ′

)5 +
1

30
(
βV ′

)6
]

exp (−βV ) R2dR, (18)

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-009803
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-009803
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in which NA denotes the Avogadro constant and V ′ = dV/dR,
V ′′ = d2V/dR2, and V ′′′ = d3V/dR3.

B. Second acoustic virial coefficient

The expressions for the second acoustic virial coeffi-
cient βa are related to those for the second pressure virial

coefficient B and its first and second temperature derivatives
B′ and B′′. The semi-classical expansion of the second acoustic
virial coefficient in powers of λ is8

βa = βa,cl + λ βa,qm,1 + λ2 βa,qm,2, (19)

where the individual terms are formulated as

βa,cl = 4πNA

∫ ∞
0

[
1 − exp (−βV )

(
1 +

2
5
βV +

2
15

(βV )2
)]

R2dR, (20)

βa,qm,1 = 4πNA

∫ ∞
0

[
3
5
−

2
5
βV +

2
15

(βV )2
] (
βV ′

)2exp (−βV ) R2dR, (21)

βa,qm,2 = 4πNA

∫ ∞
0

{ [
−

6
5
(
βV ′′

)2
−

12

5R2

(
βV ′

)2
−

20
9R

(
βV ′

)3 +
13
30

(
βV ′

)4
]

+

[
4
5
(
βV ′′

)2 +
8

5R2

(
βV ′

)2 +
56

45R
(
βV ′

)3
−

1
5
(
βV ′

)4
]
βV

+

[
−

4
25

(
βV ′′

)2
−

8

25R2

(
βV ′

)2
−

8
45R

(
βV ′

)3 +
1
45

(
βV ′

)4
]

(βV )2
}

exp (−βV ) R2dR. (22)

C. Second dielectric virial coefficient

The formulas for the dielectric virial coefficients can be
derived from the expansion of the Clausius-Mossotti function.
The second dielectric virial coefficient can again be approxi-
mated as the sum of a classical term and of quantum corrections
up to second order40

Bε = Bε,cl + λBε,qm,1 + λ2Bε,qm,2, (23)

where

Bε,cl =
8π2N2

A

3

∫ ∞
0
∆αaveexp (−βV ) R2dR, (24)

Bε,qm,1 = −
8π2N2

A

3

∫ ∞
0

[
∆αave

(
βV ′

)2
− 2∆α′ave βV ′

]

× exp (−βV ) R2dR, (25)

Bε,qm,2 =
16π2N2

A

5

∫ ∞
0

(∆αavef + g) exp (−βV ) R2dR, (26)

f =
(
βV ′′

)2 +
2

R2

(
βV ′

)2 +
10
9R

(
βV ′

)3
−

5
36

(
βV ′

)4, (27)

g = ∆α′ave

[
−

4

R2
βV ′ −

10
3R

(
βV ′

)2 +
5
9
(
βV ′

)3
]

− 2∆α′′ave βV ′′. (28)

Here,

∆α′ave = d∆αave/dR, (29)

∆α′′ave = d2
∆αave/dR2. (30)

D. Uncertainty

There are several possible sources of uncertainty in the
present calculation. First, quantum effects become important
at low temperatures depending on the molecule in question.

The lower-limit temperature for the calculations considered in
this work is 115.78 K, the triple-point temperature of kryp-
ton. At this temperature, the corresponding ratio of the ther-
mal de Broglie wavelength to the atomic diameter is much
smaller than one, i.e.,

(
h/
√

2πmkBT
)
/σ = 0.05 � 1. This

guarantees that we can use classical statistical-mechanics for-
mulae with second-order or third-order quantum corrections to
compute the different virials of krypton for the whole temper-
ature range.

In addition, Moszynski et al.44 suggested that the use
of Padé approximants could better represent full quantum-
mechanical results at lower temperatures. Our earlier unpub-
lished work on the second dielectric virial coefficient of neon at
116 K showed that the Padé approximant of order [1/1] repro-
duced the semi-classical value up to five digits of precision.
This agreement further justifies the correctness of classical
treatments supplemented by quantum expansions in powers
of λ.

The other major contribution to the uncertainty of
our calculated values is attributed to the uncertainty of
the potential and polarizability of the krypton dimer. As
mentioned above, we generated V+(R), V�(R), ∆αfit,+

ave (R),
and ∆αfit,−

ave (R) expressions that account for the correspond-
ing lower- and upper-limit ranges of potential energies
and interaction-induced polarizabilities. Following the work
of Hurly et al.,45,46 we attempted to estimate the uncer-
tainty U of the present theoretical results in the following
manner:

U (X) =
|XV+ − XV− |

2
, (31)

where X denotes virial coefficients calculated from V+ and V�.
The calculation of Cencek et al.38 suggested that the influence
of the uncertainties in V (R) on the values of Bε was negli-
gible. Hence, for the second dielectric virial coefficient, the
uncertainty of the theoretical values was estimated as
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U (Bε) =

���Bε,∆αfit,+
ave
− B

ε,∆αfit,−
ave

���
2

. (32)

V. COMPARISON WITH VIRIAL COEFFICIENT
VALUES FROM THE LITERATURE

Here we compare the results of our calculations with val-
ues published elsewhere for the second pressure, acoustic, and
dielectric virial coefficients.

A. Second pressure virial coefficient

Very recently, Jäger et al.12 reported the calculation of the
second pressure virial coefficient of krypton from their new
potential. Figure 3 of the present article illustrates that the
ab initio pressure virial values of Jäger et al. are perfectly
consistent with our theoretical values over a wide tempera-
ture range. The difference between the two ab initio values
decreases from 1 cm3·mol�1 at 150 K down to 0.3 cm3·mol�1

at room temperature and further down to below 0.1 cm3·mol�1

above 2000 K. Figure 3 also shows the uncertainty of our cal-
culated values, which was evaluated from the potentials V+(R)
and V�(R) by the procedure discussed above. It is clear that
the differences between the second virial coefficient of Jäger
et al. and the results of this work never exceed the theoretically
estimated uncertainty for the complete temperature range.

There is a large number of experimental data for the sec-
ond virial coefficient of krypton, published more than 30 years
ago. The information on the sources of literature was sum-
marized in the compilation of Dymond et al.47 It should be
noted that an experimental determination of a strictly two-
body quantity such as B(T ) requires caution to eliminate three-
and higher-body effects even at low densities of the gas.48 In
their Fig. 1, Jäger et al.12 compared their computed values
with measured data sets for the second pressure virial coeffi-
cient. Because of the excellent agreement between the values
of Jäger et al. and this work, the same pattern could be drawn
for the comparison of the experimental data with our computed
values. In many cases, a deviation of more than ±1 cm3·mol�1

FIG. 3. Absolute deviations of the literature second pressure virial coefficient
data, Blit, from the values calculated in this work, Bcal, for krypton as a function
of temperature. Data sources: (red dashed line) calculated from the potential
by Jäger et al.12 The shaded area corresponds to the uncertainty of Bcal.

could be observed between the theory and measurements for
the second pressure virial coefficient, the maximum deviation
being�16 cm3·mol�1 at the low temperature of 120 K. Aziz and
Slaman49 did not consider the second pressure virial coefficient
of krypton as primary data in the development of their empir-
ical potentials due to the inconsistency of experimental data,
which is partly supported by the rather large disagreements in
Fig. 1 of Jäger et al.12 Moreover, considering the fact that the
uncertainty of theoretical values for krypton is normally lower
than that of the experimental data,47 we conclude that both the
present results and those of Jäger et al. may be employed as
recommended values for the second pressure virial coefficient
of this gas.

B. Second acoustic virial coefficient

To the best of our knowledge, only one publication with
measurements of the second acoustic virial coefficient of kryp-
ton is to be found in the literature. Ewing et al.50 built a cylin-
drical interferometer to measure the speed of sound of gases.
Values of the second acoustic virial coefficient of krypton were
reported for 285 K, 305 K, and 320 K, with a reported standard
uncertainty of around ±1 cm3·mol�1. Figure 4 shows that the
experimental data of Ewing et al. are in close agreement of
±(0.5–1.0) cm3·mol�1 with the theoretically calculated values
of this work.

Figure 4 also presents the differences between values com-
puted in this work and those from several krypton potentials
in the literature, namely, the well-recognized empirical poten-
tial of Dham et al.,51 the old ab initio potential of Slavı́ček
et al.,52 and the new, high-accuracy potential of Jäger et al.12

The second acoustic virial coefficient from the potential of
Dham et al. agrees with the theoretically calculated values
of this work at T ≤ 500 K. However, the absolute deviation
begins to exceed the estimated uncertainty of our theoretical
values at higher temperatures. The computed values from the

FIG. 4. Absolute deviations of the literature second acoustic virial coefficient
data, βa,lit, from the values calculated in this work, βa,cal, for krypton as a
function of temperature. Data sources: (black open squares) Ewing et al.;50

(blue dotted line) calculated from the potential by Dham et al.;51 (magenta
dot line) calculated from the potential by Slavı́ček et al.;52 (red dashed line)
calculated from the potential by Jäger et al.12 The shaded area corresponds to
the uncertainty of βa,cal.
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FIG. 5. Absolute deviations of the literature second dielectric virial coeffi-
cient data, Bε,lit, from the values calculated in this work, Bε,cal, for krypton
as a function of temperature. Data sources: (black filled square) Orcutt and
Cole;53 (red open circle) Vidal and Lallemand;54 (blue filled triangles) Huot
and Bose.55 The shaded area corresponds to the uncertainty of Bε,cal.

potential of Slavı́ček et al. exhibit a relatively large disagree-
ment with those of this work: the differences are larger than
the corresponding uncertainties of our theoretical values over
the whole temperature range. On the other hand, one can see

in Fig. 4 that there is good agreement for the second acoustic
virial coefficient between the new ab initio potential of Jäger
et al. and that of this work. The absolute difference lies within
the uncertainty range of our theoretical calculation for tem-
peratures up to 5000 K. We suggest that the present computed
values can be used with confidence in different fields wherever
values of the second acoustic virial coefficient of krypton are
required.

C. Second dielectric virial coefficient

Three sets of experimental data are available in the lit-
erature for the second dielectric virial coefficient of kryp-
ton.53–55 Figure 5 shows a comparison of the experimental data
with the values calculated here. Orcutt and Cole53 reported
one data point at ambient temperature, where the difference
slightly exceeds our theoretical uncertainty. The data point
by Vidal and Lallemand54 at 25 ◦C shows a disagreement
of �1.3 cm6·mol�2, which is six times larger than the esti-
mated uncertainty of our calculated value. A larger scatter of
±(2–4) cm6·mol�2 can be observed for the deviation of the
data by Huot and Bose55 with respect to the values calcu-
lated here. The inconsistency of measurements from different
laboratories implies that the prediction of this work may be
applied as reference values for the second dielectric virial
coefficient.

TABLE V. Virial coefficients of krypton and their estimated uncertainties as a function of temperature. The
temperatures 115.78 K and 209.48 K correspond, respectively, to the triple- and critical-point temperatures of
krypton. The virial coefficient values at other temperatures are available upon request for the range between
115.78 K and 5000 K.

T B U(B) βa U(βa) Bε U(Bε)
(K) (cm3 ·mol�1) (cm3 ·mol�1) (cm3 ·mol�1) (cm3 ·mol�1) (cm6 ·mol�2) (cm6 ·mol�2)

115.78 �321.30 4.44 �347.47 6.11 10.923 0.384
150 �198.04 2.68 �191.03 3.39 8.7080 0.2976
200 �116.34 1.68 �94.934 2.071 7.2778 0.2447
209.48 �106.55 1.57 �83.747 1.934 7.1080 0.2386
250 �75.164 1.23 �48.270 1.52 6.5637 0.2199
273.15 �62.372 1.09 �33.980 1.37 6.3408 0.2125
273.16 �62.368 1.09 �33.975 1.37 6.3407 0.2125
293.15 �53.306 1.00 �23.911 1.26 6.1817 0.2075
298.15 �51.271 0.98 �21.658 1.23 6.1458 0.2064
300 �50.539 0.98 �20.848 1.22 6.1329 0.2060
350 �34.244 0.82 �2.9210 1.0372 5.8418 0.1973
400 �22.716 0.71 9.6263 0.9079 5.6296 0.1916
450 �14.164 0.62 18.835 0.813 5.4663 0.1876
500 �7.5918 0.56 25.832 0.740 5.3354 0.1847
600 1.7896 0.47 35.644 0.635 5.1354 0.1810
700 8.1039 0.41 42.069 0.561 4.9861 0.1789
800 12.596 0.37 46.498 0.507 4.8676 0.1778
900 15.922 0.34 49.663 0.466 4.7693 0.1772
1000 18.459 0.31 51.983 0.433 4.6851 0.1770
1500 25.184 0.23 57.344 0.333 4.3807 0.1784
2000 27.779 0.19 58.588 0.282 4.1717 0.1811
2500 28.906 0.17 58.517 0.250 4.0089 0.1839
3000 29.382 0.15 57.940 0.228 3.8745 0.1867
3500 29.528 0.14 57.157 0.212 3.7600 0.1894
4000 29.495 0.13 56.297 0.201 3.6604 0.1919
4500 29.360 0.12 55.419 0.191 3.5726 0.1943
5000 29.166 0.11 54.551 0.184 3.4945 0.1965
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VI. CONCLUSIONS

We have developed a new interaction-induced isotropic
polarizability for the krypton dimer and used it together with
our recent interaction potential to calculate the second pres-
sure, acoustic, and dielectric virial coefficients of krypton
gas. The coupled-cluster method at the CCSD(T) level as
well as basis sets up to aV6Z was selected to determine the
interaction-induced isotropic polarizability∆αave(R). The cor-
rections for core-core correlation, core-valence correlation,
and relativistic effects were also included to improve the qual-
ity of ∆αave(R). As a result, values of the interaction-induced
isotropic polarizability were determined with low uncertainty
for the krypton dimer at 25 different interatomic distances R
covering the range of 2.6–12.0 Å. An analytical expression
of ∆αfit

ave (R) was obtained by fitting the individual values in
order to facilitate the calculation of the second dielectric virial
coefficient.

Using the newly developed interaction-induced polar-
izability, together with our highly accurate interatomic
potential,10 we computed the second pressure, acoustic, and
dielectric virial coefficients of krypton gas. Calculations were
performed using classical statistical mechanics supplemented
with quantum corrections up to second or third orders. The
theoretically calculated values of virial coefficients are listed
in Table V for the temperature range of 115.78 K–5000 K.
The corresponding uncertainty given in Table V is estimated
from the difference between the values calculated using V+(R),
V�(R), ∆αfit+

ave (R), and ∆αfit−
ave (R).

Comparisons of the literature data were performed with
the values computed in this work. Some inconsistencies were
found with respect to the relatively small number of experi-
mental data. On the other hand, the two new ab initio potentials,
the one of Jäger et al.12 and the one of this work, exhibit excel-
lent agreement for the calculations of the second pressure and
acoustic virial coefficients. All things considered, we believe
that the present theoretically predicted values can be used as
reference values for the different virial coefficients of krypton
gas. Given the scarcity of reliable experimental data, accurate
measurements of thermophysical and electromagnetic proper-
ties of krypton gas are desirable to further check the validity
of the present predictions.

SUPPLEMENTARY MATERIAL

See supplementary material for the results of the
interaction-induced anisotropy polarizability of the krypton
dimer.
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