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Thermal conductivity of the Earth’s lower mantle greatly impacts
the mantle convection style and affects the heat conduction from
the core to the mantle. Direct laboratory measurement of thermal
conductivity of mantle minerals remains a technical challenge at
the pressure-temperature (P-T) conditions relevant to the lower
mantle, and previously estimated values are extrapolated from low
P-T data based on simple empirical thermal transport models. By
using a numerical technique that combines first-principles elec-
tronic structure theory and Peierls–Boltzmann transport theory,
we predict the lattice thermal conductivity ofMgO, previously used
to estimate the thermal conductivity in the Earth, at conditions
from ambient to the core-mantle boundary (CMB). We show that
our first-principles technique provides a realistic model for the P-T
dependence of lattice thermal conductivity of MgO at conditions
from ambient to the CMB, and we propose thermal conductivity
profiles of MgO in the lower mantle based on geotherm models.
The calculated conductivity increases from 15 –20 W∕K-m at the
670 km seismic discontinuity to 40 –50 W∕K-m at the CMB. This
large depth variation in calculated thermal conductivity should be
included in models of mantle convection, which has been tradition-
ally studied based on the assumption of constant conductivity.

first-principles ∣ phonon transport theory ∣ phonon lifetime ∣
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Thermal conductivity (κ) is one of the most important mineral
properties in determining the heat budget of the Earth. Heat

in the Earth’s interior is transferred by convection in the mantle
and core and regulated by conduction at thermal boundary layers.
As defined by Fourier’s law of heat conduction JQ ¼ −κ · ∇T, de-
termines the conducting heat flow density (JQ) in the presence of
a temperature gradient ∇T. κ also appears in the Rayleigh num-
ber, which measures the convective vigor of a system. Thus, the
thermal conductivity of the lower mantle affects the structure,
thickness, and dynamics of the CMB (1, 2), the style and structure
of mantle convection (3–5), and the amount of heat conducted
from the core to the mantle (6) that in turn influences the gen-
eration of the Earth’s magnetic field (7).

Despite its importance, thermal conductivity remains as one of
the least constrained physical properties of minerals, especially at
lower-mantle pressures (P) and temperatures (T) (23–135 GPa
(8) and approximately 1,900–4,000 K (9–12). Experimental data
at deep mantle conditions are scarce due to the technical diffi-
culty of measuring thermal conductivity at these extremes. Ther-
mal conductivity of lower-mantle minerals is often estimated
either by extrapolating data from lower P-T conditions and/or
employing theoretical models with parameters fitted with lower
P-T data (1, 13). However, direct extrapolation to deep mantle
conditions can be unreliable beyond the P-Trange of the measure-
ments, and empirical models are often based on untested assump-
tions. For example, the sound velocities are used to approximate
phonon velocities, and the pressure dependence of phonon life-
time is assumed to be given by equilibrium thermodynamic
properties, such as lattice thermal expansion and/or Grüneisen
parameters.

MgO, the end-member of the second-most abundant mineral
in the lower mantle, has historically served as a model system for
evaluating the thermal conductivity of the deep mantle (14).
Its thermal conductivity is also an order of magnitude larger than
that of Mg end-member of the most abundant mantle mineral—
silicate perovskite (15). Hence, studying its thermal conductivity
provides a useful approach to constraining the thermal conduc-
tivity of the lower mantle. Though efforts have been devoted to
measuring the thermal conductivity of MgO (κMgO) at both high
pressures and temperatures (16–24), most of those measure-
ments have been limited to below 7 GPa. First, nonempirical
calculations of lattice thermal conductivity (25) of MgO at high
pressure were performed based on molecular dynamics simula-
tions and Green–Kubo theory (26). An order of magnitude un-
derestimation of κMgO in that study is maybe due to the ionic
potential model adopted in the simulation that does not ade-
quately account for lattice anharmonicity.

In this paper, we report a first-principles study of the lattice
thermal conductivity of MgO in the pressure and temperature
ranges of 0–150 GPa and 300–4,000 K, respectively. Our method
combines first-principles lattice vibration calculations, quantum
phonon scattering theory, and Peierls–Boltzmann transport equa-
tion within the single-mode excitation approximation. We first in-
vestigate the microscopic heat transport characteristics of all the
acoustic and optic phonons and examine the density and tem-
perature dependence of κMgO. We then determine κMgO at lower-
mantle pressures and temperatures with the thermal equation of
state predicted from our first-principles calculations. Finally, we
propose a depth profile of κMgO in the lower mantle based on
previous estimates of cold and hot geotherms.

Results
To predict the lattice thermal conductivity of MgO crystals at
conditions from ambient to those of the Earth’s CMB, we first
computed the harmonic force constant matrices of lattice vibra-
tion and the third-order lattice anharmonicity tensors at seven
densities, ranging from 3.35 to 5.15 g∕cm3 (27). At each density,
we explicitly evaluated phonon scattering rates of all the irreduc-
ible phonon modes at nine temperature points from 300–4,000 K.
Finally, we derived microscopic phonon mode conductivity
κði; ~qÞ ¼ 1

3
cV ði; q⇀Þv2gði; q⇀Þτði; q⇀Þ using the calculated heat capa-

city cV , group velocity vg, and scattering rate/lifetime τ of each
phonon mode ði; q⇀Þ on a 16 × 16 × 16 q

⇀
-point Brillouin zone

grids for all the 63 density-temperature configurations.
Fig. 1 shows our calculated average mode conductivity κmode

for phonons within different phonon frequency (ω) ranges at ρ ¼
3.70 g∕cm3 and T ¼ 300 K. While all phonons transfer heat, the
lower frequency acoustic modes are clearly much more efficient
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in heat conduction than the higher frequency optic modes. This is
consistent with the fact that the acoustic modes, especially those
near the Brillouin zone center, have much larger group velocities
than optical modes. For modes near zone center, we find that the
ratio between acoustic and optic group velocities can be as large
as 12. Furthermore, our calculations reveal that the average
phonon lifetime of acoustic phonons is approximately a factor
of threelonger than those of optic phonons. MgO crystalline with
only two atoms per unit cell, contain equal numbers of acoustic
branches and optic branches. Yet, the overall contribution of
acoustic phonons accounts for nearly 85% of the total thermal
conductivity at 300 K (Fig. 1 Inset). This ratio deceases slightly
with increasing temperature as more optic phonons are ther-
mally excited, and it approaches 80% above the Debye tem-
perature. The high temperature limit of κacoustic∕κtotal increases
mildly under large compression (for example, about 87%
at ρ ¼ 5.15 g∕cm3).

Fig. 2 presents our theoretical prediction of the temperature
dependence of lattice thermal conductivity of MgO at selected
densities. The inverse of the calculated lattice thermal conductiv-
ity κ−1MgO scales consistently as a linear function (Aþ BT) over the
entire calculated temperature range (from 300–4000 K) when
density is held constant. This predicted linear temperature depen-
dence of 1∕κ can’t be extended to low temperature as our calcu-
lations do not take into account the scattering mechanisms (such
as point defects, dislocations, or grain boundary scattering) that
are much less important at temperature conditions relevant to the
Earth’s hot interior. For instance, Gibert et a.l (28) has studied
experimentally the effect of grain boundary scattering on the
thermal diffusivity. By comparing the measured thermal diffusiv-
ity of both single crystal and polycrystalline olivine (with grain
sizes varying from 0.01– 2 mm), they concluded that the grain
boundary scattering has a negligible effect on thermal diffusivity
at ambient conditions. To extend this finding to elevated tempera-
tures and pressures (larger density), we adopt a simple empirical
model of Callaway (29) and find that grain boundaries of poly-
crystalline MgO start to play a role at ambient condition only

if the characteristic length l is in the order of μm or smaller. Tak-
ing l ¼ 1 μm for example, the estimated reduction in κMgO due to
grain boundary scattering is 13% and 26% at room temperature
for density of 3.70 g∕cm3 and 5.15 g∕cm3, resp., and they are
significantly lower at 2,000 K and become only 2% and 2.6%,
resp. A similar trend is also found in our modeling of defect scat-
tering. Hence, we conclude that it is valid to neglect the effect of
defects and boundary scattering in studying the thermal conduc-
tivity of Earth’s hot interior, and phonon–phonon interaction is
the major scattering process that hinders the heat transport at
high temperatures.

In this study, the temperature-independent A term mainly re-
presents the contribution associated with the mass disorder (i.e.,
isotope) induced phonon scattering (30). As shown in the Inset of
Fig. 2, the neglection of isotope-induced phonon scattering leads
to a noticeable overestimation of thermal conductivity around
ambient temperature. At 300 K, this can lead to an overestima-
tion as large as 46% for ρ ¼ 3.70 g∕cm3. However, the contribu-
tion of the isotope effect diminishes at high temperature—falling
to 4% at 4000 K at the same density. This reveals that it is
necessary to include the isotope effect when one compares the
κðTÞ∕κðT ¼ 300 KÞ ratio between measurements and calcula-
tions. The temperature-dependent BT term can be primarily at-
tributed to the anharmonicity-induced 3-phonon scattering
mechanism that dominates at high temperature, and lattice ther-
mal conductivity approaches to the well-known κ ∝ 1

T relation at
the high-T limit (31). As both A and B terms are non-negatively
defined, we fitted the log functions of A and B terms of the seven
studied densities with second order polynomial functions of 1∕ρ:

κ−1ðT; ρÞ ¼ AðρÞ þ BðρÞT

¼ exp
�
a0 þ

a1
ρ
þ a2
ρ2

�
þ exp

�
b0 þ

b1
ρ
þ b2
ρ2

�
· T: [1]

The fitting parameters are listed in Table 1.

Discussion
We first compare our results with available experiments, which
are performed under either ambient pressure or room tempera-
ture conditions. Based on the proposed density-temperature
model (Eq. 1 and Table 1), κMgO at isobaric conditions can be
readily obtained with the thermal equation of state ρðT; PÞ. Fig. 3
shows the calculated κMgOðT; PÞ at ambient pressure based on our
calculated (Solid Line) and measured (Dashed Line) equation of

Fig. 1. The semilog histogram plot of the averaged mode κ (with
Δω ¼ 20 cm−1) for phonon modes at different frequency ranges for MgO
at the density of 3.70 g∕cm3 and temperature of 300 K. The averaged mode
κ of phonons decreases rapidly with increase of phonon frequency. κmode of
acoustic phonon modes near the Brillouin zone center (i.e., at the lowest
60 cm−1 frequency region) is about two orders of magnitude larger than
those of acoustic phonon modes around the zone boundaries (between
300 cm−1 to 400 cm−1), and more than four orders of magnitude larger that
those of longitudinal optic modes around the zone center (above 650 cm−1).
The Horizontal Dashed Line indicates the value of bulk κ. Although there are
equal numbers of acoustic and optic phonon modes, the overall contribution
of optic phonons at the high temperature limit only accounts for about 15%
and 14% in total lattice thermal conductivity at the density of 3.70 g∕cm3

and 5.15 g∕cm3 resp. (Inset).

Fig. 2. The inverse of lattice thermal conductivity of MgO crystal scales
consistently as a linear function of temperature, from 300– 4,000 K, at the
constant density condition. The calculated κ results from two phonon scat-
tering mechanisms—the temperature-dependent, anharmonicity-induced
phonon scattering and the temperature-independent, isotope-induced scat-
tering. The isotope effect on the total κ is illustrated in the inset for results
from 300–4,000 K at two densities.
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state (32), in comparison with four sets of experimental data
(16–18, 23, 33) in symbols. Our predicted κMgO at 300 K is about
66 W∕K-m, which is in agreement with the reported experimen-
tal data scattering from 36 to 70 W∕K-m. A detailed review of
experimental data for κMgO, including systematic errors in various
techniques and qualities of measured samples, can be found in
ref. 13. The adopted first-principles local density approximation
(LDA) theory is known to overestimate density, and we find
adopting the experimental equation of state (32) lowers our cal-
culated κMgO by about 10%. Nevertheless, our calculations in gen-
eral slightly overestimate κ, and this is consistent with the fact that
all experimental samples are of small sizes and contain intrinsic
imperfections, whereas calculations assume perfect crystallinal-
ity. While decreasing with temperature, lattice thermal conduc-
tivity increases under compression. The Inset of the Fig. 3 shows
the calculated κðPÞ∕κðP ¼ 0Þ ratio at 300 K (Solid Line) that
falls in the scattered experimental high pressure measurements
(19–22). The LDA-calculated isothermal pressure coefficient
(d lnðκMgOÞ∕dP) is about 3.90% GPa−1 at T ¼ 300 K near ambi-
ent pressure, which is in good agreement with the measured value
of 4% GPa−1 (20, 33) and 4.9% GPa−1 (21).

Due to the lack of direct measurements at deep mantle con-
ditions, various empirical models (1, 33, 34) have been proposed
to describe the relative change in thermal conductivity upon com-
pression to extrapolate experimental data to the relevant pressure
conditions of the Earth’s interior. Most of these models are based
on the simple empirical expression of κ ¼ avBT

3γ2T proposed by Dug-
dale and McDonald (35), where a is the interatomic distance, v is
the averaged phonon velocity, BT is the isothermal bulk mod-
ulus, and γ is the Grüneisen parameter. Additional approxima-
tions are often adopted to describe the density dependency of
these relevant thermal properties. For example, Poirier (34) de-
rived d lnðκÞ∕dP ¼ ð2γ þ 5∕3Þ∕BT . Hofmeister (36) proposed a
damped harmonic oscillator (DHO) model that originates di-
rectly from the microscopic phonon transport theory (Eq. 2).

However, because of the insufficient experimental data on indi-
vidual phonon modes (such as their group velocities and life-
times), further simplifications are inevitable for studying real
minerals. The simplified DHO model predicts the upper limit
of the d lnðκÞ∕dP coefficient as ð4γ þ 1∕3Þ∕BT (23).

To compare our first-principles results with empirical models,
we first calculated d lnðκMgOÞ∕dP based on the above two empiri-
cal models by using our LDA-calculated γ and BT (Fig. 4A and B),
and then derived their κðPÞ∕κo ratio by integration (Fig. 4C
and D). The simplified DHO-model-predicted d lnðκMgOÞ∕dP
at 300 K and ambient pressure is in agreement with our first-
principles calculation. However, our calculated d lnðκMgOÞ∕dP
decays faster under compression than that predicted by the sim-
plified DHO model, and incidentally approaches the prediction
of the Poirier model at higher pressures (Fig. 4A). Consequently,
the κðPÞ∕κo ratio predicted by the Poirier model is closer to that
calculated with our first-principles method, whereas the predic-
tions by the simplified DHO model are more than 20% larger at
pressures higher than 80 GPa (Fig. 4C). The incidental agree-
ment between the Poirier model and our first-principles calcula-
tions does not hold for all temperatures. For example, at 3,000 K
our calculated d lnðκMgOÞ∕dP is significantly higher than that pre-
dicted by empirical models at ambient pressure (Fig. 4B), and the
difference in the prediction of κðPÞ∕κo between empirical models
and current calculations becomes more significant at higher tem-
peratures and pressures (Fig. 4D). Our results suggest that such
empirical models are inadequate even for structurally simple
minerals like MgO, and they are more likely to yield larger un-
certainties for complex minerals such as silicate perovskite.
Furthermore, we find that temperature has a strong effect on the
pressure derivative d lnðκMgOÞ∕dP. It increases rapidly with the
increase of temperature at pressures lower than 50 GPa, and be-
comes almost temperature independent above 80 GPa. At CMB
conditions (P ¼ 135 GPa and T ¼ 3; 000 K), our first-principles
calculations predict κMgO and d lnðκMgOÞ∕dP to be around
43 W∕K-m and 0.36% GPa−1, resp.

The geotherm of the Earth’s lower mantle depends on
the thermal conductivity of the lower mantle. In the current study,
we adopt a hot and cold geotherm based on experimental
constraints (37) to give a direct estimation of κMgO at the

Table 1. Fitting parameters of thermal conductivity of MgO as a
function of density (ρ) and temperature (T ) shown in Eq. 1. The
adopted units for κ, T , and ρ are W∕K-m, K, and g∕cm3, resp.

a0 a1 a2 b0 b1 b2

−17.50000 80.07815 −132.02510 −9.30500 −35.90633 118.58743

Fig. 3. Comparison between calculation and experiment for κMgO at ambi-
ent pressure. Our calculated κMgOðTÞ at ambient pressure, based on the LDA
calculated (Solid Curve) and experimentally measured (Dashed Curve) ther-
mal equation of state (32), are in good agreement with previous experimen-
tal measurements from refs. 16–18 and 23 (Symbols). Underestimation of
equilibrium density from LDA calculations leads to ∼10%. The Inset shows
the data of calculated and measured κMgO (19–22) as a function of pressure
(up to 6 GPa) at room temperature.

Fig. 4. Pressure derivatives d lnðκMgOÞ∕dP and isothermal κðPÞ∕κðP ¼ 0Þ ra-
tios as functions of pressure: (A) d lnðκMgOÞ∕dP at 300 K, (B) d ln κ∕dP at
300 K, (C) κðPÞ∕κðP ¼ 0Þ at 3,000 K, and (D) κðPÞ∕κðP ¼ 0Þ at 300 K. Our
first-principles results are plotted in Solid Curves, compared with previous
empirical models: Dashed-Dotted Curve for Hofmeister’s simplified DHO
model (23) and Dashed Curve for Poirier’s model (34).
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lower-mantle conditions (Fig. 5). The cold geotherm corresponds
to whole-mantle convection, whereas the hot geotherm to
partially-layered convection. Large differences between the hot
and cold geotherms are due to the uncertainties in the tempera-
ture structure as well as the lateral inhomogeneity. Nevertheless,
these two geotherms provide a reasonable temperature bound for
the lower mantle. At the same depth, κMgO can be 5–10 W∕K-m
lower along the hot geotherm than along the cold geotherm.
However, it holds true that κMgO changes greatly with depth, from
15–20 W∕K-m at the 670þ km transition zone to 40–50 W∕K-m
on the mantle side of the CMB. The calculated depth depen-
dence of κMgO along the hot and cold geotherms above the
CMB are κhotMgOðzÞ ¼ 15.753þ 0.01844 · z − 3.142 · 10−6 · z2 and
κcoldMgOðzÞ ¼ 21.421þ 0.01844 · z − 3.768 · 10−6 · z2 resp., where z
(in the unit of km) is the depth in the lower mantle relative to
the 670 km seismic discontinuity. An 800 K-temperature differ-
ence across the CMB layer can reduce κMgO from 43 W∕K-m to
34 W∕K-m, indicating depth dependence of thermal conductivity
within the layer should not be neglected when one considers the
heat conduction at the boundary layer; e.g., it affects the thick-
ness of the thermal boundary layer δD through ∫ δD

0
q

κðzÞ dz ¼ ΔT
for a heat flux from the core of q.

Our current first-principles calculations represent an improve-
ment in modeling the lattice thermal conductivity of this model
oxide material. Several key issues need to be resolved to realis-
tically constrain the thermal conductivity of the lower mantle,
which is mainly controlled by the composite-averaged thermal
conductivity of (Mg,Fe)O and ðMg;FeÞSiO3. First, the effect
of iron in mineral solid solutions is important yet poorly under-
stood. The iron content not only modifies the density, interatomic
forces, and lattice anharmonicity but also adds microscopic dis-
order. Our first-principles technique can be expanded to include
this effect, but this is beyond the scope of this study. A prelimi-
nary analysis reveals that the key effect is a significant reduction
of phonon group velocities with increasing iron contents. Effects
associated with the Fe-Mg mass disorder, although significant at
300 K, diminish with increasing temperature. A quantitative
evaluation of iron effects requires more comprehensive the-
oretical treatment.

Second, accurate modeling of composite-averaged thermal
conductivity requires knowledge of the thermal conductivity of
both the individual constituents and the structures of the compo-
site. The perovskite end-member (MgSiO3) is known to have a
much lower thermal conductivity than the magnesiowüstite
end-member (MgO). At ambient conditions, the thermal conduc-
tivity of MgSiO3 perovskite is 5.1 W∕K-m (38), which is less than
10% of that of MgO. If MgSiO3 perovskite behaves similarly to

MgO upon heating and compression, we estimate that the upper
bound of the thermal conductivity at the top of the CMB will be
around 11 ∼ 12 W∕K-m, assuming that MgO and MgSiO3 are
layered side-by-side along the direction of heat flow (39). More
realistic composite structures should be included in future stud-
ies, along with better constraints on the thermal conductivity of
silicate perovskite and the effects of iron content in solid solution
at lower-mantle conditions.

Finally, in the Earth’s hot interior, an additional effective ther-
mal conductivity due to the inter-grain thermal radiation can be
considered. Radiative thermal conductivity increases rapidly with
increasing temperature, and becomes significant at high tempera-
tures (40, 41). On the other hand, the effect of radiative heat
transfer is diminished with the reduction of grain size; it is also
controlled by the iron concentration of the minerals (42). Optical
absorption measurements at high pressure have been used to in-
fer the radiative thermal conductivity of lower-mantle minerals
(43–46). Large discrepancies were found among the estimates
of radiative thermal conductivity from these measurements that
might be due to the differences in sample grain size, iron concen-
tration, or different experimental setups. Further experimental
investigation is needed to constrain the average radiative thermal
conductivity at conditions near the CMB, including the contribu-
tion due to the high-spin/low-spin transition.

Method
Many microscopic processes contribute to the overall heat con-
duction in a solid. For insulating mantle minerals, heat conducts
mainly via lattice vibrations (31). The Peierls–Boltzmann trans-
port equation expresses the lattice thermal conductivity as:

κ ¼ Vo

8π3 ∑
3Na

i¼1

Z
BZ

�
1

3
cV ðq⇀; iÞvgðq⇀; iÞdðq⇀; iÞ

�
dq
⇀

¼ Vo

8π3 ∑
3Na

i¼1

Z
BZ

�
1

3
cV ðq⇀; iÞv2gðq⇀; iÞτðq⇀; iÞ

�
dq
⇀
; [2]

where Vo is the volume of the unit cell,Na is the number of atoms
in the unit cell, and the integration is over the first Brillouin zone
in the reciprocal q

⇀
-space. Each phonon mode in the q

⇀
-space is

labeled with its crystal momentum q
⇀

and polarization index i
(from 1 to 3Na), and cV , vg, τ, and d ¼ vgτ are its heat capacity,
phonon group velocity, phonon lifetime, and phonon mean free
path, resp.

The first-principles local density approximation techniques are
now routinely adopted to accurately predict harmonic lattice
phonon spectra that can be readily used to derive phonon heat
capacity and group velocity in Eq. 2. To evaluate phonon lifetime
τ, we consider two types of perturbation to the nearly indepen-
dent phonon model—the third-order lattice anharmonicity and
the isotope mass disorder. The phonon scattering rate (Γðq⇀; iÞ)
that is the inverse of τðq⇀; iÞ, can be calculated from Fermi’s Gold-
en rule: Γf

i ¼ hΦf jδHjΦii, where Γf
i is the transition rate from the

initial state Φi to the final state Φf of a many-phonon system un-
der perturbation δH. In the present study, instead of directly solv-
ing for the phonon distributions at the presence of temperature
gradients, we further adopt the single-mode excitation approxi-
mation to evaluate the relaxation rate of a phonon mode when
only this phonon mode is perturbed out of its thermal equilibrium
(47). Each type of phonon scattering is treated individually, and
the overall transition rate is approximated as the sum of all the
transition rates from different scattering mechanisms [Matthies-
sen’s rule (48)]. More details of the phonon lifetime calculations
are provided in SI Text.

Fig. 5. Pressure and temperature contour plot of the lattice thermal
conductivity of MgO. Dashed Lines are estimated cold and hot geotherms
from experiments (37).
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Conclusions
The first-principles-derived model has been developed to ad-
vance our understanding of lattice thermal conductivity of miner-
als at deep mantle conditions. By combining the microscopic
transport theory and first-principles lattice dynamics calculations,
we have predicted the value for MgO over a broad range of P-T
conditions of the lower mantle without empirical extrapolation.
The good agreement with low P-T measurements suggests that
the first-principles-based implementation of Peierls–Boltzmann
transport theory within single-mode excitation approximation
can be used to predict the thermal conductivity of insulating man-
tle minerals at high P-T conditions. Our study indicates that the
calculated values for MgO vary significantly with depth in the
lower mantle, increasing by a factor of 2–3 from the 670 km dis-
continuity (15–20 W∕K-m) to the mantle side of the CMB

(40–50 W∕K-m). This finding starkly contrasts with the assump-
tion of constant thermal conductivity that is widely adopted in
many geodynamics simulation studies of the lower mantle. Our
first-principles technique could be readily adapted to study lattice
thermal conductivity of iron-bearing lower-mantle minerals. In
light of further improved experimental data of lattice thermal
conductivity at lower pressure (49) and radiative thermal conduc-
tivity at the condition of the CMB, our study should serve as a
useful stepping stone to realistically constrain the total thermal
conductivity of the lower mantle.
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