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A novel computational method for a surface Green’s function matrix is introduced for the
calculation of electrical current in molecular wires. The proposed nonrecursive approach includes an
infinite number of principal layers and yields the second-order matrix equation for the transformed
Green’s function matrix. The solution is found by the direct diagonalization of the auxiliary matrix

without any iteration process. As soon as complex roots of the auxiliary matrix ��ĜS� are
calculated, the gaps and the bands in the surface electronic structure are found. It is shown that the
solution of a second-order matrix equation determines the spectral density matrix, that is, the density
of states for noninteracting electrons. Single and double principal layer models are studied both
analytically and numerically. The energy interval for nonvanishing spectral matrices is determined.
This method is applicable to matrices of any rank. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2713743�

Design and fabrication of nanoscale electronic circuits
and devices have inspired much of the last decade’s thorough
research into the electronic properties of a molecular bridge
placed between electrodes. In theoretical studies, the electri-
cal current through a metal-molecule-metal junction is usu-
ally investigated in the framework of Green’s function meth-
ods, and the effects of contacts are described by coupling
matrices �.1,2 Thus, correct calculations of contacts become
an important problem in the evaluation of electrical current.
To find �, one needs to determine the matrix elements of
interaction between the molecule and surface states of metal
electrodes and multiply by the surface spectral function ma-
trix, that is, proportional to the imaginary part of the surface
Green’s function.2,3 The latter determines the surface density
of states for noninteracting electrons.4

Density functional theory is commonly used in the cal-
culations of the electrical current.5–7 For many molecular
bridges, where electron correlation is important, advanced
electron propagator methods should be employed.8–10 In
these methods, the electrical current can be expressed in
terms of pole strengths aj, poles � j, and the Fermi functions
of the electrodes fL,R�� j�,

8–10

J =
e

�
�

j

�L�j��R�j�aj�fL�� j� − fR�� j��
��L�j� + �R�j��

, �1�

where coupling matrices for left and right electrodes are
given by

�L�j� = �
i=1

nl

ci
2�j��i

L�j�, �R�j� = �
i=nl+1

n

ci
2�j��i

R�j� .

The index i denotes active terminal orbitals with correspond-
ing partial interactions �i and contributions to Dyson orbitals
ci�j� in which the Green’s function matrix is diagonal. In the
derivation of Eq. �1�, we have assumed that linewidth �cou-
pling� matrices are in diagonal forms. Meir and Wingreen2

found the expression for coupling matrices,

�i
L,R = �

k,�
Vi,k�

* Vk�,iA�
L,R�k� , �2�

where Vk�,i is an interaction matrix element between surface
states and molecular bridge states and A��k�L,R is a surface
spectral function such that A��k�L,R=−2 ITr�G�

L,R�k ,E�	.
Because the elements of the coupling matrices in Eq. �1�

can vanish with respect to the voltage applied to nanoscale
devices,10 electronic properties play an important role in mo-
lecular wires, determining negative differential
resistance,11,12 rectification,13 and switching.14 Molecular de-
vices with these properties could perform functions in elec-
tronic circuits that are analogous to those of transistors.1

The main goal of this work is to properly calculate the
spectral function or the imaginary part of the surface Green’s
function. There are several competing methods. The most
commonly used is a renormalization-group technique pro-
posed by López-Sancho and Lopez-Sancho15 that proceeds
through a finite number of recursive computations. In this
procedure, an auxiliary, imaginary parameter i� is introduced
in the initial step5–7,16,17 and, after several iterations, the finite
imaginary part of the surface Green’s function is found.
However, the imaginary part of the matrix is not clearly de-
fined. In general, the Green’s function should be diagonal-
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ized first, the imaginary part of the matrix should be sepa-
rated subsequently, and finally a unitary transformation
should restore the matrix to the initial form. Such a proce-
dure will be implemented in this work. For correlated elec-
trons, the density of states and the imaginary part of the
Green’s function are two different quantities that are equal to
each other only for noninteracting fermions.4 Thus, for cor-
related electrons in electrodes, the previous approaches
should be substantially improved and new methods should
be developed. In this paper, we reconsider a renormalization-
group technique for the surface Green’s functions,18 reducing
the problem to a second-order matrix equation that will be
solved analytically and numerically for gold surfaces. In par-
ticular, we study single and double atomic layer models. In
the proposed approach no artificial parameter � is required
and the imaginary part of the Green’s function appears natu-
rally. Analytical solutions for special cases will be presented
to provide an intuitive understanding of the proposed
method.

The nearly diagonal Hamiltonian matrix for a semi-
infinite electrode is given by

HR = 
H00 H01

H01
† HR

� , �3�

where H00 represents the couplings between the atoms within
the surface layer and H01 stands for the interaction between
surface and bulk layers. A three-dimensional metal electrode
is considered to be infinite in two directions along the sur-
face plane and semi-infinite in the normal direction. Thus,
the electrode is divided into a semi-infinite stack of principal
layers, where the latter term is defined as the smallest set of
atomic layers that reflects the symmetry of a crystal with
nearest-neighbor interactions between them.15 Hence, peri-
odic boundary conditions in two surface directions reduce
the system to noninteracting one-dimensional chains, with
one chain for each wave vector k� in the plane of the layer.
This form of the Hamiltonian exhibits the property that after
the removing of a surface layer, the Hamiltonian remains
unchanged. The matrix �3� can be presented as a semi-
infinite matrix in the following manner:

HR =

H00 H01 0 0 0 ¯

H01
† H00 H01 0 0 ¯

0 H01
† H00 H01 0 ¯

0 0 H01
† H00 H01 ¯

] ] ] ] ] �

� . �4�

Here the square matrices H00 and H01 have rank n, where n
is the number of atomic layers in the principal layer multi-
plied by the number of atomic orbitals under consideration.
H00 describes interactions within the principal layer. �Here
we assume that the surface layer is identical to the bulk lay-
ers.� H01 accounts for interactions between two nearest-
neighbor principal layers. This matrix appears on both sides
of the diagonal �as a Hermitian one on a bottom side� be-
cause of a general requirement for Hamiltonians to be Her-
mitian. In this work, we study a gold lattice oriented in the

�111� direction. H00 and H01 are, in general, matrix functions
of a surface wave vector k�.

A surface Green’s function, i.e., the projection of the
electrode Green’s function G onto the surface electronic
states, is given by the following expression:6,18

GS�E� = �E − H00 − H01GS�E�H01
† �−1. �5�

In general, GS is a matrix where the �i , j� element is a local
retarded Green’s function that connects atomic layers i and j
within a principal layer.

To evaluate GS, we employ a scheme by López-Sancho
and Lopez-Sancho,15 where the electrode Hamiltonian is rep-
resented as a block-tridiagonal matrix. Eq. �5� for the surface
Green’s function matrix can be rewritten as a second-order
matrix equation in the following way:20

H01Y
2 + �H00 − E�Y + H01

† = 0, �6�

where Y=GSH01
† . Employing a resolvent matrix method,19

we numerically solve matrix Eq. �6� for fixed k�.
In a single layer model, we assume that the principal

layer of the �111�-fcc gold structure �see Fig. 1� consists of a
single atomic layer. In the perpendicular direction, there are
semi-infinite chains of atoms connected by s orbitals. In this
case, the matrix elements H00 and H01 become simple �1
�1� numbers: H00=Vg1�k��, H01=Vg2�k��, V is a coupling
between s orbitals of the nearest-neighbor atoms, g1�k�� de-
termines phase shifts between s orbitals of atoms inside the
atomic layer, and g2�k�� stands for phase shifts between s
orbitals of atoms in neighboring atomic layers. s orbitals are
assumed to be orthonormal. The coupling constants V are
taken from Ref. 21. For gold, V=−0.908 eV. The functions
g1�k�� and g2�k�� are found in the tight-binding
approximation.22 In this model, the matrix expression �6� for
the surface Green’s function results in a simple quadratic
equation with the solution,

GS�k�� =
H00�k�� − E

2�H01�k���2
± i

��2�H01�k����2 − �H00�k�� − E�2

2�H01�k���2
.

�7�

The imaginary part of GS�k�� exists for energies in the inter-
val: H00−2�H01��E�H00+2�H01�. Consequently, the local
spectral function, A�k� ,E�=−2 ITr�GS�k� ,E�	, can also be
found. The integral spectral function A�E� is determined
from integration of the local spectral function over k� in the
first Brillouin zone. Figure 2 shows the integral spectral

FIG. 1. fcc-lattice structure of gold.
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function for a �111�-gold surface versus energy E �see the
dashed line in Fig. 2�.

In the more realistic double layer model, we assume that
there are only two layers in a principal layer in which the
gold atoms interact with both their nearest neighbors �V1=
−0.908 eV� and their second nearest neighbors �V2

=0.038 eV�. In this case, H00 is a 2�2 matrix,

H00 = 
h11
0 �k�� h12

0 �k��
h12

0*�k�� h22
0 �k��

� . �8�

h11
0 �k�� and h22

0 �k�� determine the intralayer interactions in
the first and second atomic layers, respectively, while h12

0 �k��
stands for the interaction between the first and second atomic
layers within the principal layer. The 2�2 Hamiltonian ma-
trix H01 in Eq. �4� determines the interaction between two
neighboring principal layers,

H01 = 
h11
1 �k�� h12

1 �k��
h21

1 �k�� h22
1 �k��

� . �9�

h11
1 �k�� stands for the interaction between the first atomic

layer in the upper principal layer and the first atomic layer in
the lower principal layer. h12

1 �k�� determines the interaction
between the first atomic layer in the upper principal layer
and the second atomic layer in the lower principal layer and
its value is rather small. h21

1 �k�� corresponds to the interac-
tion between the second atomic layer in the upper principal
layer and the first atomic layer in the lower principal layer.
Finally, h22

1 �k�� determines the interaction between the sec-
ond layer in the upper principal layer and the second layer in
the lower principal layer. For these terms, the tight-binding
coupling constants V1 and V2, and phase shifts g�k�� between
atomic layers are chosen in the same manner as for the single
layer model described above. Now Eq. �6� for the surface
Green’s function matrix is a second-order, 2�2 matrix prob-
lem. We solve Eq. �6� both numerically and analytically. The
former approach is necessary for solving Eq. �6� for higher
rank matrices where an analytical solution is impossible.

Numerical solution. Employing the resolvent matrix
method,19 we have written an original FORTRAN 90 code to

compute ĜS for different k� points in a two-dimensional Bril-
louin zone of a �111�-gold surface �see Fig. 1�. Both the
surface Green’s function matrix, GS=Y�H01

† �−1, and the sur-
face local spectral function, A�k� ,E�=−2I Tr�GS�k� ,E�	,
have been calculated.

An analytical solution is possible only in a particular
case where all the elements of the matrix �9� vanish except
h21

1 �k��. If we assume that h11
0 =h22

0 �i.e., the first and second
atomic layers are the same�, the analytical solution for the �1,
1� element of the surface Green’s function matrix yields

g11 =
�h11

0 − E�2 − �h12
0 �2 + �h21

1 �2 ± i�D

2�E − h11
0 ��h21

1 �2
, �10�

where D=2��h12
0 �2+ �h21

1 �2��h11
0 −E�2+2�h12

0 �2�h21
1 �2− �h11

0 −E�4

− �h12
0 �4− �h21

1 �4. Consequently, the imaginary part of g11 is
given by

Ig11 = −
�D

2�E − h11
0 ��h21

1 �2
. �11�

Similarly

Ig22 = −
�h11

0 − E��D

2�h21
1 �2�h12

0 �2
. �12�

Therefore, the surface local spectral function is obtained in a
standard way: A�E ,k��=−2�Ig11+Ig22� where the surface
local spectral function is nonvanishing when D�0. The four
roots of D=0 determine the proper intervals for the allowed
energy: E1,2,3,4=h11

0 ± ��h21
1 �± �h12

0 ��. At a particular k� point in
a two-dimensional Brillouin zone, the surface local spectral
function has an energy gap if there are four different roots
�see Fig. 4� for the local spectral function.

The width of the energy gap is equal to 2���h12
0 �− �h21

1 ���.
Note that if �h12

0 �= �h21
1 � �atomic layers inside the principal

layer interact with the same strength as neighboring atomic
layers in adjacent principal layers�, then the model becomes
the single layer model that has been described above. The
surface integral spectral function for the gold electrode ori-
ented in the �111� direction is depicted in Fig. 2 �the solid
line�. The integral spectral function calculated for a double
layer model resembles the behavior of the integral spectral
function calculated for a single layer model, but the numeri-
cal values are different. Indeed, in both cases the integral
spectral functions vanish at the same values of energy.

To demonstrate the potential of our method, we find
spectral functions of the cuboid structure with the following
parameters: h11

0 =−0.1 eV, h12
0 =−2.0 eV, and h11

1 =−0.1 eV
�see the structure in Fig. 3�. Two different structures �I and
II� differ by the intraprinciple layer coupling: h21

1 =−1.0 eV
for structure I and h21

1 =−2.0 eV for structure II. As shown in
Fig. 2, the integral spectral function of structure I exhibits a
well-pronounced gap ��2 eV� with two high bands. If the
intraprincipal layer interaction is changed to −2.0 eV ��h12

0 �
= �h21

1 ��, the gap vanishes. In addition to the calculations of
the integral spectral function, we have found a local surface
spectral density function along the high-symmetry line of the

FIG. 2. Integral spectral function. The dashed line corresponds to the single
layer model of gold described by Eq. �7�, the solid line determines the
integral spectral function for two layers in the gold principal layer, the
dotted line stands for the cuboid model where the intralayer interaction is
h21

1 =−1.0 eV �structure I�, and the dashed-dot line determines the cuboid
structure �II� where the intralayer interaction is h21

1 =−2.0 eV.
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surface Brillouin zone in the �̄X̄ direction �see Fig. 4�. In this
figure, we have fixed the projection such that ky =0 and cal-
culated the dependence of the imaginary part of the Green’s
function on kx and E. For the calculations, we have chosen
the following values of the parameters: h11

0 =−2.0 eV, h12
0 =

−2.0 eV, h11
1 =−0.1 eV, and h21

1 =−1.0 eV. For the definition
of the parameters see Eqs. �8� and �9�. Figure 4 demonstrates
how the width of the gap �the valley� and the heights of the
bands depend on the wave vector kx and the energy E.

For the calculation of electric current in molecular tunnel
junctions it is necessary to find coupling matrices connecting
a bridge with metal electrodes �see Eq. �2��. A spectral den-
sity of the leads plays an important role in the energy depen-
dence and therefore, in the current-voltage characteristics of
a molecular device. Usually this matrix is considered to be
energy independent, thus assuming that the whole voltage
dependence is owing to the bridge. In this work we have
challenged this assumption and have shown how the energy
dependence of the spectral density of the metal electrodes
can be crucial for a voltage dependence in electric current.
The problem under consideration is numerical rather than
analytical because each particular case can lead to different
energy dependences in ��E�. In this work we have proposed
a novel method for nonrecursive calculations of the surface
Green’s function matrices using an infinite number of prin-

cipal layers. This method is truly ab initio, for it has no
adjustable parameter for finding the nonvanishing imaginary
part of the surface spectral Green’s function matrix. A
renormalization-group scheme has been employed that leads
to the second-order matrix equation for the surface Green’s
matrix. The solutions of this equation exhibit imaginary parts
in a diagonalized form that represents the imaginary parts of
the Green’s matrix or the spectral function matrix that is the
density of states for noninteracting electrons. For current cal-
culations in molecular wires, it is important to use the imagi-
nary part of the Green’s function rather than the density of
states. In our calculations, we have obtained both gap and
nongap solutions for the spectral function �see the curves for
structures I and II in Fig. 2� for different values of the pa-
rameters of the Hamiltonian. For realistic values of the pa-
rameters of the Hamiltonian of the gold structure �see Fig.
1�, single and double layer models for the principal layer
have been studied. Despite some qualitative similarities be-
tween them �no gap�, the single layer model exhibits a
broader, nonstructured peak in the spectral function with half
the peak/valley ratio. From our calculations, we have ob-
tained the integral spectral density for the �111�-fcc gold
structure depicted in Fig. 1. To demonstrate the capabilities
of the proposed numerical method, we have studied cuboid
structures �see Fig. 3� with different sets of parameters �see
the graphs for structures I and II in Figure 2�. For structure I,
a well-pronounced gap and band peaks have been found �for
this structure the intraprincipal layer coupling h21

1 =−1.0 eV�,
while for h21

1 =−2.0 eV �structure II�, the gap shrinks to zero.
In addition to the integral spectral function, we have studied
the local spectral function along the high-symmetry line of

the surface Brillouin zone in the �̄X̄ direction. The gap width
and the band peaks substantially depend on the wave vector
kx.

In addition, an analytical solution has been found for a
double layer model where the interaction between the prin-
cipal layers is only due to the coupling between neighboring
layers. This solution �see Eqs. �10�–�12�� demonstrates the
origination of the complex Green’s function matrix for some
particular energy intervals corresponding to the bands of the
surface electronic structure. In the future, this model will be
extended to higher-rank matrix calculations that include
more gold orbitals.
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