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Assessment of transition operator reference states in electron propagator
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The transition operator method combined with second-order, self-energy corrections to the electron
propagator �TOEP2� may be used to calculate valence and core-electron binding energies. This
method is tested on a set of molecules to assess its predictive quality. For valence ionization
energies, well known methods that include third-order terms achieve somewhat higher accuracy, but
only with much higher demands for memory and arithmetic operations. Therefore, we propose the
use of the TOEP2 method for the calculation of valence electron binding energies in large molecules
where third-order methods are infeasible. For core-electron binding energies, TOEP2 results exhibit
superior accuracy and efficiency and are relatively insensitive to the fractional occupation numbers
that are assigned to the transition orbital. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2784638�

I. INTRODUCTION

Koopmans’s theorem �KT� is useful when calculating
ionization potentials and electron affinities.1 However, unbal-
anced error cancellations may occur in this approximation.
On one side, it neglects electron correlation and, on the other,
final-state orbital relaxation effects are ignored. For valence
ionization energies, these corrections usually are opposite in
sign, but in many cases the cancellation of errors is poor.
Relaxation effects may be included by using the �ESCF

method,2 in which Hartree-Fock calculations are performed
on initial and ionized states. However, this approach and its
correlated generalizations that involve subtraction of two
large total energies have computational and conceptual dis-
advantages. Electron propagator theory3–5 provides a direct
alternative for the calculation of ionization energies and elec-
tron affinities.

Perturbative electron propagator methods that are based
on Hartree-Fock reference states generate corrections to KT
that take correlation and relaxation effects into account.6

From an analysis of the second-order approximation to the
electron propagator, Pickup and Goscinski6 concluded that
“upon ionization of an electron in spin-orbital k, the ioniza-
tion energy described in the lowest order by �k is corrected
by reorganization effects of the remaining spin orbitals.”
They also concluded that the second-order electron propaga-
tor includes “changes in pair correlation energies due to re-
organization.” Thus, approximate electron propagators in-
clude correlation and relaxation corrections.

Systematic improvements in electron propagator ap-
proximations produce improved results for ionization poten-
tials. However, these improvements may require lengthy cal-
culations or large quantities of memory.7 For example, the

diagonal, third-order approximation �and therefore the outer
valence Green function �OVGF� methods4 as well� requires a
step with ov4 arithmetic scaling �where o and v are, respec-
tively, the number of occupied and virtual spin orbitals� and
its self-energy formulae depend on the full set of transformed
two-electron repulsion integrals.7 Even the diagonal, partial
third-order method �P3� for ionization energies has an o2v3

step and calls for transformed integrals with one occupied
and three virtual indices in its rate-limiting contraction.8 A
method of comparable accuracy with less than fifth-power
arithmetic dependence on molecular size and without the
need for a full transformation of electron repulsion integrals
to the Hartree-Fock orbital basis would widen the scope of
applications in a significant manner.

A direct method which offers a simple way to recover
most of the relaxation effects is also highly desirable. Such a
method exists and is known as the transition operator method
�TOM�. The TOM is an uncorrelated, self-consistent field
�SCF� procedure and is a special case of the grand-canonical
Hartree-Fock method.9 Correlated electron propagator cor-
rections to the TOM have been considered previously.10–13 In
this work, we reexamine this idea for the second-order ap-
proximation to the electron propagator and compare the re-
sults with higher-order approximations that are widely used.
It is shown that the TOM combined with the second-order
electron propagator produces results that compete well with
more computationally demanding approximations such as
OVGF and P3. Thus, reliable treatment of much larger mo-
lecular systems may be realized using this approach.

In Sec. II, the theory of the TOM is described. Formulae,
in a suitable form for programming, are also given. Section
III presents some results of our implementation and com-
pares them with normal electron propagator calculations. In
Sec. IV, we conclude.
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II. THEORY

The TOM was introduced first by Slater in X�
calculations.14,15 Janak proved that this method can also be
used more generally in density functional theory.16,17 Ac-
cording to Janak’s theorem,18

EN−1 − EN = �
0

1

�i�n�dn , �1�

where EN and EN−1 are the energies of the N and N−1 elec-
tron systems and the integration variable n is the occupation
number of the spin orbital that pertains to a given ionization
energy or electron affinity. The simplest numerical approxi-
mation for this integral is a one-point quadrature,

�
0

1

�i�n�dn � �i�1/2��1 − 0� = �i�1/2� . �2�

Obviously, this is not the most accurate numerical integration
and one might consider using more points. For example, the
unrestricted generalized transition state method proposed by
Williams et al.19 and extensively applied by Chong20,21 in-
volves a two point quadrature. A single-point quadrature has
the benefit of yielding the ionization energy as a result of a
single calculation. Furthermore, one gets a single reference
system for further improvements such as those described be-
low.

From a practical point of view, the TOM is realized by
removing a fraction of an electron �in most cases 1/2� from
a given spin orbital. The resulting SCF produces molecular
orbitals that resemble those of the initial �N electron� and
final �N−1 electron� systems. When doing electron propaga-
tor calculations with TOM spin orbitals, fractional occupa-
tion numbers occur in the reference system. This choice re-
sults in modifications of the usual two-particle-one-hole
�2ph� and two-hole-one-particle �2hp� contributions to the
self-energy and addition of new terms that reflect the half-
hole-half-particle description of the transition spin orbital.
Derivations of electron propagator approximations have been
expressed in terms of grand-canonical reference ensembles,
of which the TOM is a special case.10,12,13,22,23 �One, there-
fore, is calculating electron binding energies of a grand-
canonical ensemble.� In the usual diagonal, second-order ap-
proximation to the electron propagator, the following
equation has to be solved:

�k = �k + �
q,s�t

�	kq��st
�2Nqst

�k + �q − �s − �t
, �3�

with

Nqst = nq�1 − ns − nt� + nsnt, �4�

where �q and nq are, respectively, the energy and occupation
number for spin orbital q. �k is the negative of the ionization
energy for the case in which an electron is extracted from
spin orbital k. Electron repulsion integrals are expressed in
terms of Dirac notation where 	kq � st
= 	kq �st
− 	kq � ts
. The
indices q, s, and t label general spin orbitals. Indices i, j, and
k are used for occupied spin orbitals; a and b are used for
virtual spin orbitals. �Note that the transition orbital is

grouped with the occupied orbitals, but it has a fractional
occupation number.� Equation �3� is generally expressed in
terms of the 2ph and 2hp contributions. For the case of in-
teger occupation numbers �when the TOM is not used�, the
working formula is as follows:

�k = �k + �
a,i�j

�	ka��ij
�2

�k + �a − �i − � j
+ �

i,a�b

�	ki��ab
�2

�k + �i − �a − �b
.

�5�

The sums in Eq. �5� correspond to the 2hp and 2ph contri-
butions. The Nqst constants of Eq. �3� are equal to unity for
these contributions and to zero for any other. However, when
the TOM is employed, the transition spin orbital has an oc-
cupation of 1/2 and, therefore, the normalization constants
for the 2ph and 2hp terms are not always equal to 1. Fur-
thermore, contributions reflecting the partially occupied na-
ture of the transition orbital occur such that

�k = �k + �
a,i�j

�	ka��ij
�2ninj

�k + �a − �i − � j
+ �

i,a�b

�	ki��ab
�2

�k + �i − �a − �b

+ �
a,i

�	ki��ka
�2�1 − nk�
�k + �i − �k − �a

. �6�

The latter formula is valid for any choice of nk between zero
and unity, provided that k is the only fractionally occupied
spin orbital. Note that a factor of ni in the second term is not
needed, for the term where i=k vanishes. Pickup and Gos-
cinski’s classification of relaxation, polarization, and correla-
tion terms remains intact,6 except that relaxation contribu-
tions for an ionization energy in the first sum �where i or
j=k� and for an electron affinity in the last sum of Eq. �6� are
weighted by factors of nk and �1−nk�, respectively. With an
initial guess of �k��k, the first iteration of Eq. �6� yields

�k = �k + �
a,i�j

i,j�k �	ka��ij
�2

�k + �a − �i − � j
+ �

i,a�b

�	ki��ab
�2

�k + �i − �a − �b

+ �1 − 2nk��
a,i

�	ki��ka
�2

�i − �a
. �7�

As identified by Pickup and Goscinski, the last summation in
Eq. �7� is a relaxation term. Note that it vanishes for
nk=1/2. For nk�1/2, this term will tend to correct the in-
adequate treatment of relaxation in the reference TOM and
will enhance �vide infra� the stability of the solution of Eq.

TABLE I. Ne ionization energies �eV�.

Method 1s 2s 2p

KT 891.79 52.53 23.14
�ESCF 868.35 49.20 19.70
TOM 868.16 49.10 19.54
Eq. �5� 866.22 46.98 19.96
Eq. �6� 868.93 48.34 20.97
Ref. 13 868.91 48.37 20.91
Expt.a 870.2 48.26 21.56

aSee Ref. 26.
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�6� with respect to the choice of fractional occupation num-
ber.

Only a partial integral transformation from the atomic
basis is needed. Because all necessary integrals contain the
index k, the transformation has a fourth-power scaling. Arith-
metic operations in the evaluation of correlation corrections
to the TOM orbital energy scale cubically. Therefore, the
rate-limiting step has quartic scaling. The largest block of
electron repulsion integrals, needed in the second term of Eq.

�6�, requires memory that scales as ov2. These arithmetic and
memory advantages are procured at the price of repeating
TOM calculations for each electron binding energy of inter-
est.

In general, ionization energies are positive, i.e., the sys-
tem is more stable with the electron included. Thus, removal
of an electron fraction from a molecular spin-orbital makes
the system less stable. In most cases, a higher orbital energy
in the TOM calculation results. Although the optimal mo-

TABLE II. Ionization energies of atoms �eV�.

Atom Ionization KT EP2 EP3 OVGF P3 TOEP2 Expt.a

Li 2S→ 1S 5.34 5.35 5.35 5.35 5.35 5.35 5.39
Be 1S→ 2S 8.42 8.89 9.03 9.23 8.84 8.89 9.32
B 2P→ 1S 8.65 8.40 8.31 8.50 8.22 8.36 8.30
C 3P→ 2P 11.91 11.30 11.25 11.35 11.10 11.25 11.26
N 4S→ 3P 15.48 14.44 14.53 14.58 14.31 14.48 14.53
O 3P→ 4S 14.15 12.93 13.42 13.39 13.07 13.04 13.62
F 2P→ 3P 18.40 16.37 17.49 17.14 16.92 16.85 17.42
Ne 1S→ 2P 23.00 20.12 22.07 21.44 21.21 21.03 21.56
Na 2S→ 1S 4.96 4.98 5.00 5.00 4.98 4.98 5.14
Mg 1S→ 2S 6.89 7.34 7.44 7.55 7.30 7.34 7.65
Al 2P→ 1S 5.93 5.91 5.92 5.93 5.81 5.90 5.98
Si 3P→ 2P 8.18 8.10 8.11 8.11 7.98 8.08 8.05
P 4S→ 3P 10.65 10.49 10.48 10.48 10.35 10.49 10.49
S 3P→ 4S 11.00 10.83 10.93 10.95 10.77 10.03 10.36
Cl 2P→ 3P 13.05 12.58 12.74 12.74 12.58 12.70 12.97
Ar 1S→ 2P 16.06 15.39 15.63 15.60 15.49 15.61 15.76
Average ��� 0.50 0.36 0.16 0.15 0.28 0.23

aSee Ref. 35.

TABLE III. Valence ionization energies �eV�.

Molecule Orbital KT EP2 EP3 OVGF P3 TOEP2 Expt.a

B2H6 1b3g 12.85 12.21 12.30 12.36 12.14 12.30 11.9
CH4 1t2 14.80 14.07 14.37 14.32 14.22 14.34 14.40
C2H4 1b3u 10.24 10.33 10.52 10.48 10.55 10.65 10.51

1b3g 13.77 12.75 13.17 13.06 12.98 13.00 12.85
3ag 15.94 14.48 14.98 14.77 14.89 14.94 14.66
1b2u 17.48 15.89 16.41 16.17 16.11 16.25 15.87
2b1u 21.52 19.34 19.79 19.61 19.44 19.69 19.23

HCN 1� 13.49 13.68 13.58 13.61 13.96 14.00 13.61
HNC 1� 14.13 13.74 14.11 14.02 14.11 14.11 12.55
NH3 3a1 11.60 10.17 11.01 10.74 10.73 10.65 10.8
N2 1�u 16.47 17.05 16.45 16.63 17.18 17.38 16.98

3�g 17.17 15.02 15.92 15.35 15.93 15.47 15.60
2�u 21.30 18.20 19.89 19.08 19.30 18.59 18.78

CO 5� 15.09 14.06 13.98 13.85 14.27 14.13 14.01
1� 17.28 16.37 17.36 17.07 17.04 16.88 16.91

H2CO 2b2 11.99 9.94 11.53 11.04 10.90 10.38 10.9
H2O 1b1 13.73 11.50 13.08 12.61 12.49 12.29 12.78

1a1 15.76 13.86 15.34 14.91 14.77 14.56 14.74
1b2 19.21 18.08 19.14 18.87 18.74 18.68 18.51

HF 1� 17.50 14.70 16.83 16.02 15.94 15.66 16.19
3� 20.68 18.94 20.48 19.84 19.84 19.64 20.00

F2 1�g 18.05 14.20 16.52 15.58 15.62 14.89 15.83
3�g 20.46 20.46 21.15 21.00 21.04 21.06 21.1
1�u 22.05 17.35 20.12 19.01 18.89 18.10 18.8

Average ��� 1.17 0.62 0.49 0.25 0.25 0.36

aSee Refs. 8 and 36 for geometry details and experimental values.
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lecular orbitals of the system with all the electrons and the
system with a fraction of an electron removed are very simi-
lar, they differ in spatial distribution and energy. In many
cases, energy reordering will occur when the TOM is ap-
plied. In order to achieve correct TOM calculations, special
care should be exercised to verify that the electron fraction is
removed from the same orbital in every SCF iteration. How-
ever, the number label �energy position� of the transition or-
bital may change during the iterations. Correct assignments
of occupation numbers to spin orbitals may be achieved in
most cases by employing overlap criteria. If, for two con-
secutive iterations of the SCF, the molecular orbital coeffi-
cients are CI and CI+1, the overlap between the molecular
orbitals of the successive iterations is given by

M = �CI�†SCI+1, �8�

where S is the atomic orbital overlap matrix. The matrix M
differs from the identity matrix I in two respects: orbital
ordering and small variations in element values. Denoting by
M� the result of ordering M to obtain the maximum coinci-
dence with the identity matrix, the difference

� = M� − I � 0 �9�

will be a matrix with only small values. The closer the SCF
is to convergence, the smaller are the elements of this matrix.
This principle is employed in assigning occupation numbers
to orbitals after each SCF iteration.

III. RESULTS AND DISCUSSION

All the calculations presented in this work were done
with a new implementation of the TOM method and a modi-
fied version of the quasiparticle �diagonal self-energy� elec-
tron propagator programs in GAUSSIAN 03.24 In all calcula-
tions presented below, the cc-pVTZ basis set25 was used
unless otherwise specified. All core orbitals were included in
the electron propagator calculations.

In previous applications of the TOM with the electron
propagator,10,13 the ionization energies of the neon atom were
reported. Here, we revisit this system with the same basis set
used previously13,26 as a validation of the new implementa-
tion �see Table I�. The results of the TOM combined with the
second-order electron propagator �TOEP2� improve over the
normal electron propagator calculation by as much as 1 eV.
Comparison of the first two rows of Table I shows that the
relaxation energy amounts to more than 20 eV for the 1s
case. This correction is much larger than its correlation coun-
terpart. The ordinary second-order approximation to the elec-
tron propagator accounts for most of the relaxation. How-
ever, the TOM result is more accurate than the correlated
value obtained with ordinary second order and is a reason-
able zeroth-order choice for subsequent propagator improve-
ments.

Only a few systems have been treated with the TOEP2
method.10,13 A larger number of calculations are needed for a
better estimation of quality. Due to its low arithmetic scaling
properties, TOEP2 can be very useful in the treatment of
large molecular systems. Furthermore, it is important to con-
sider whether it is preferable to use approximations with
third-order terms or instead to include relaxation with the
TOM reference state. Because the answer to this question
could depend on the nature of the ionization process, we
focus first on valence ionizations. In Table II, the results for

FIG. 1. Improvement of TOEP2 over EP2 for ionization energies of alkane
chains.

FIG. 2. CEBEs for orbital 1s of C.

FIG. 3. CEBEs for orbital 1s of N.

FIG. 4. CEBEs for orbital 1s of O.
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atomic first ionization energies are listed. The TOEP2
method is compared to widely used approximations of the
electron propagator including second-order �EP2�, third-
order �EP3�, P3, and OVGF methods. It appears that, for
these systems, P3 does not offer a clear advantage over EP2.
However, if only closed-shell systems are considered, it
does. �Open shell P3 calculations are discussed in Ref. 27.�
For the 2s and 3s shells, the use of TOEP2 does not offer any
improvement over EP2. The advantage of the TOM reference
is more important in noble-gas atoms. The accuracy of the
TOEP2 method is much better than that of EP2 and even
better than that of P3.

Calculation of atomic ionization potentials allows us to
test the performance of TOEP2 on various elements. On the
other hand, atoms are special cases, for they are small in
spatial extent and have a central force potential. Tests on
small molecular systems have greater relevance to potential
applications on large systems. Table III shows the results for
valence ionization energies of a set of closed-shell mol-
ecules. TOEP2 has a smaller average error than EP2 and
EP3. However, for valence ionization energies of closed-
shell molecules, P3 and OVGF are superior to TOEP2.

Although TOEP2 is outperformed by the P3 and OVGF
methods, its accuracy is much better than that of EP2. In
many applications to large molecules, a mean absolute de-
viation of 0.36 eV might be useful for making assignments
of spectra, especially if the experimental error bars are of a
comparable magnitude, and the TOEP2 may constitute a
good compromise between accuracy and efficiency. For ex-
ample, in Fig. 1 we compare the calculated ionization ener-
gies of alkane chains obtained with the P3 and second-order
approximations. The accuracy of TOEP2 is very close to that
of P3. The relaxation correction to the second-order approxi-
mation is as much as 0.4 eV for pentane and larger alkanes.
Unlike EP2, TOEP2 can be used as a reliable method for the
calculation of electron binding energies in large molecules.
P3 and OVGF methods are more accurate but have a fifth-
power arithmetic scaling. Therefore, among the diagonal ap-
proximations to the electron propagator, TOEP2 offers an
attractive compromise between accuracy and computational
cost in the treatment of large systems.

To evaluate the performance of TOEP2 on core-electron
binding energies �CEBEs�, we calculate the 1s ionization en-
ergies on a test set of molecules with C, N, O, and F nuclei.20

Experimental geometries28,29 are used and comparisons are
made to experimental CEBEs.30 The CEBEs under consider-

ation are of the order of hundreds of eVs. Relaxation ener-
gies are more than 10 eV. Therefore, if one could recover
90% of the relaxation energy, the remaining error would still
be about 1 eV. �In many experiments, the error bars are ap-
proximately this large.� Thus, correct treatment of relaxation
becomes crucial in the calculation of CEBEs. In the applica-
tion of TOM, care should be taken to recover the relaxation
energy in an accurate way. In most cases, an occupation
number of 1 /2 for the transition orbital will suffice. How-
ever, there are cases where considerable errors are introduced
by this choice. For example, Fig. 2 shows discrepancies be-
tween TOM and �ESCF results for C 1s ionization energies
exceeding 0.3 eV in several cases. Figures 3–5 show the cor-
responding data for the 1s orbitals of N, O, and F, respec-
tively. For the O 1s ionization energy in OF2, TOM and
�ESCF differ by 1.6 eV. In general, TOM results are sensitive
to transition-orbital occupation numbers.

Fortunately, as can be deduced from Eq. �7�, the results
of the TOEP2 method are not as sensitive to the choice of the
fractional occupation number. For example, the optimum oc-
cupation number for the case of the 1s orbital of OF2 is about

FIG. 5. CEBEs for orbital 1s of F.

FIG. 6. Variation of CEBEs with respect to the occupation number of the
transition orbital. Empty circles ��� correspond to TOM results. Filled
squares ��� are used for TOEP2 results. The thin line is the �ESCF value and
the thick line is the experimental reference.
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TABLE IV. C 1s electron binding energies �eV�.

Molecule KT EP2 EP3 OVGF P3 TOEP2 Expt.a

C2H4 305.64 291.81 294.08 293.42 292.74 292.19 290.79
CH4 304.92 291.59 293.44 292.94 292.35 291.15 290.86
C2H2 305.90 291.99 294.81 293.91 293.32 292.14 291.17
CH3Cl 307.21 293.48 295.49 295.01 294.38 292.94 292.4
HCN 307.23 294.35 296.01 295.48 294.90 293.32 293.5
CH3F 307.70 294.82 295.95 295.65 295.20 294.12 293.65
HCONH2 308.91 296.14 296.96 296.74 296.65 294.99 294.45
H2CO 308.54 295.97 296.79 296.57 296.35 295.31 294.47
ONCN 308.71 295.27 297.20 296.71 297.68 294.32 294.52
OCS 311.20 297.68 298.34 298.16 298.46 297.40 295.2
CO 309.11 297.97 298.03 298.02 298.24 297.33 296.13
CH2F2 310.26 297.84 298.15 298.16 293.93 297.05 296.40
Cl2CO 312.20 298.26 300.06 299.84 300.46 297.36 296.75
CO2 311.79 299.91 299.59 299.67 300.23 299.76 297.66
Average ��� 14.38 1.37 2.64 2.38 2.28 0.87

aSee Ref. 30.

TABLE V. N 1s electron binding energies �eV�.

Molecule KT EP2 EP3 OVGF P3 TOEP2 Expt.a

HCN 424.44 406.22 413.13 410.49 409.77 406.52 406.36
ClCN 424.63 406.04 412.87 412.75 409.67 406.76 406.45
ONCN*b 425.51 406.99 414.12 411.45 410.68 406.98 407.26
N*NOb 427.12 408.95 414.66 412.44 412.56 409.10 408.66
N2 426.59 409.64 414.52 412.83 412.35 409.63 409.83
ON*CNb 429.76 412.18 415.80 415.74 417.89 411.19 411.05
ClNO 431.40 413.68 416.60 415.58 416.93 412.67 411.48
NN*Ob 431.12 413.32 417.50 416.01 416.40 414.33 412.57
NF3 432.76 415.81 416.93 416.83 416.79 415.05 414.2
Average ��� 18.39 0.78 5.36 4.03 3.91 0.59

aSee Ref. 30.
bThe asterisk follows the atom in which the 1s orbitals is found.

TABLE VI. O 1s electron binding energies �eV�.

Molecule KT EP2 EP3 OVGF P3 TOEP2 Expt.a

HCONH2 558.45 535.69 548.39 543.28 541.67 536.83 537.74
H2CO 559.86 537.40 549.29 544.61 543.06 538.50 539.48
Cl2CO 5661.11 538.24 550.74 545.74 544.14 539.12 539.72
SO2 561.12 537.74 552.60 545.86 544.79 540.54 539.84
H2O 559.33 537.88 546.77 543.68 542.54 539.48 539.86
OCS 562.14 593.00 552.95 546.92 545.64 540.04 540.3
F2CO 561.06 538.9 549.60 545.60 544.25 540.25 540.77
CO2 561.89 539.44 551.59 546.66 545.50 541.40 541.19
O*OOb 563.43 540.27 554.68 547.78 547.35 541.81 541.5
H2O2 561.32 539.44 548.27 545.12 543.97 540.92 541.8
CO 562.35 541.17 553.06 547.79 546.15 541.86 542.39
ClNO 564.78 542.06 554.83 549.53 548.13 542.45 542.65
ONCN 563.66 541.36 551.38 547.40 546.51 541.73 543.43
OF2 566.60 545.10 551.54 549.26 548.88 545.83 545.33
OO*Ob 569.21 546.19 555.16 551.46 552.16 546.22 546.2
Average ��� 20.94 1.55 9.92 5.23 4.17 0.58

aSee Ref. 30.
bThe asterisk follows the atom in which the 1s orbitals is found.
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0.459 instead of 0.5. Whereas the difference in the corre-
sponding TOM results for the CEBE is about 1.6 eV, the
variation in the TOEP2 result is less than 0.2 eV. Figure 6
shows the variation of CEBEs calculated with TOM and with
TOEP2 with respect to the occupation number of the transi-
tion orbital. The TOEP2 results are remarkably stable with
respect to this parameter.

Tables IV–VII show the calculated values for C, N, O,
and F 1s CEBEs. Comparison is made to KT values and to
diagonal self-energy approximations of the electron propaga-
tor. Koopmans results are in error by as much as 14–23 eV.
Second-order electron propagator calculations correct about
90% of the deviation, producing an average absolute devia-
tion of 0.78–2.58 eV. When relaxation effects are included
with TOEP2, the average absolute deviation goes down to
0.58–0.87 eV. This range is modified to 0.51–0.91 eV when
relativistic corrections are applied using the same values as
in Ref. 20. When scaled basis sets �as suggested by Chong
and Hu21� were tested with adjustments for varying occupa-
tion numbers,31 the results for carbon and nitrogen improved,
but those for oxygen and fluorine are deteriorated. EP3, P3,
and OVGF are not good choices for the calculation of

CEBEs. Whereas they are considerably less efficient than
EP2 and TOEP2, their results for CEBEs are clearly worse. It
is likely that relaxation effects for 1s ionization energies are
sufficiently strong to compromise the stability of perturbative
methods which depart from ordinary, Hartree-Fock orbital
energies. TOEP2 is a convenient alternative for the calcula-
tion of CEBEs.

We conclude with comparisons to full configuration in-
teraction �FCI� results32–34 on the electron detachment ener-
gies of F−, N2, CO, and the two lowest states of CH2. The
data of Table VIII indicate that the P3 method performs bet-
ter than second order, third order, OVGF, and TOEP2. How-
ever, the latter method’s average absolute error is approxi-
mately equal to that of OVGF and is less than those of
second- and third-order calculations. These results suggest
that TOEP2 is an attractive compromise of accuracy and ef-
ficiency for calculations of valence electron binding energies.

IV. CONCLUSIONS

The transition operator method has been used to generate
zeroth-order orbital energies which account for relaxation ef-

TABLE VII. F 1s electron binding energies �eV�.

Molecule KT EP2 EP3 OVGF P3 TOEP2 Expt.a

ClF3�ax�b 715.72 689.24 706.19 699.08 697.49 692.51 692.22
CH3F 714.87 689.71 702.86 698.16 696.33 691.68 692.66
SF4�ax�b 715.88 689.87 705.11 699.14 697.55 693.04 692.88
CH2F2 715.88 690.82 703.64 699.10 697.36 693.20 694.15
PF3 716.73 691.32 705.15 700.01 698.43 694.20 694.18
HF 715.30 690.74 702.94 698.64 697.16 693.20 694.18
ClF 717.12 691.34 705.86 700.25 698.55 693.06 694.44
NF3 718.04 692.82 705.22 700.81 699.19 695.54 694.45
SiF4 716.70 691.62 704.84 700.03 698.52 694.55 694.70
ClF3�eq�b 718.99 693.41 706.21 701.47 700.18 694.80 694.76
OF2 718.35 693.05 705.40 700.92 699.28 696.15 695.07
SF4�eq�b 718.61 693.17 706.23 701.45 700.06 695.01 695.26
F2CO 718.08 693.03 705.49 701.06 699.61 695.91 695.43
F2 719.21 694.27 705.49 701.41 700.18 695.41 696.69
Average ��� 22.78 2.58 10.72 5.78 4.24 0.59

aSee Ref. 30.
bFor the case of axial �ax� and equatorial �eq� fluorine atoms, each is evaluated separately.

TABLE VIII. Comparison of electron propagator results with full-CI calculations of valence ionization energies
�eV�.

Molecule Orbital EP2 EP3 OVGF P3 TOEP2 FCI

F− 3t1u 0.86 6.34 4.74 3.63 2.15 3.03a

N2 3�g 14.69 15.76 15.31 15.60 15.12 15.87b

1�u 16.82 16.41 16.52 16.94 17.13 17.01b

2�u 17.94 19.79 18.98 19.05 18.32 19.12b

CO 5� 13.82 13.77 13.66 14.02 13.87 14.37b

1� 16.06 17.38 16.84 16.72 16.60 16.89b

CH2�1A1� 3a1 9.80 9.94 9.94 9.90 9.72 10.26c

CH2�3B1� 1b1 10.34 10.29 10.41 10.04 9.84 10.16c

Average ��� 0.84 0.78 0.53 0.25 0.52

aUsing “DZP+Diffuse” basis set �Ref. 32�.
bUsing “DZP+Diffuse” �Ref. 33�.
cUsing “DZP” basis set �Ref. 34�.
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fects in electron propagator calculations of ionization ener-
gies. It has been demonstrated by calculations on a set of
typical closed-shell molecules that the second-order approxi-
mation for the electron propagator using such a reference
state produces valence ionization energies of a quality that is
comparable to that of approximations with third-order terms.
Therefore, we propose the use of this approach for the cal-
culation of electron binding energies of large molecular sys-
tems.

Numerical tests show that calculated core-electron bind-
ing energies are sensitive to the fractional occupation num-
bers of the transition orbitals at the SCF level, but not in the
second-order approximation to electron propagator. Thus,
half-occupied spin orbitals are used.

The failure of methods with third-order terms in the
treatment of core-electron binding energies has been numeri-
cally demonstrated. Average errors were reduced to less than
1 eV when using the transition operator method with second-
order self-energy corrections. The latter method is an excel-
lent compromise between accuracy and efficiency, for im-
provement of these results would require inclusion of fourth-
and higher-order terms.

The combination of the TOM and diagonal second-order
self-energy corrections significantly extends the range of ap-
plicability of electron propagator calculations. Its implemen-
tation requires only minor modifications of the standard di-
agonal second-order approximation to the electron
propagator.
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