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[1] This paper presents top-down constraints on the magnitude, spatial distribution, and
seasonality of nitrous oxide (N2O) emissions over the central United States. We analyze
data from tall towers in 2004 and 2008 using a high resolution Lagrangian particle
dispersion model paired with both geostatistical and Bayesian inversions. Our results
indicate peak N2O emissions in June with a strong seasonal cycle. The spatial distribution of
sources closely mirrors data on fertilizer application with particularly large N2O sources
over the US Cornbelt. Existing inventories for N2O predict emissions that differ
substantially from the inverse model results in both seasonal cycle and magnitude. We
estimate a total annual N2O budget over the central US of 0.9–1.2 TgN/yr and an
extrapolated budget for the entire US and Canada of 2.1–2.6 TgN/yr. By this estimate, the
US and Canada account for 12–15% of the total global N2O source or 32–39% of the global
anthropogenic source as reported by the Intergovernmental Panel on Climate Change in
2007.

Citation: Miller, S. M., et al. (2012), Regional sources of nitrous oxide over the United States: Seasonal variation and spatial
distribution, J. Geophys. Res., 117, D06310, doi:10.1029/2011JD016951.

1. Introduction

[2] Nitrous oxide (N2O) plays a critical role in both
stratospheric ozone depletion and climate change. In the
stratosphere, it can react with excited oxygen atoms to pro-
duce NOx radicals which, in turn, can catalyze stratospheric
ozone destruction [Nevison and Holland, 1997; Ravishankara
et al., 2009]. Moreover, N2O is a potent greenhouse gas with
a global warming potential of 300 (on a 100 year timescale)
[Forster et al., 2007]. With the continued decline of atmo-
spheric CFC concentrations, N2O is now the third most
important long-lived anthropogenic greenhouse gas in terms
of radiative forcing (0.173 W/m2 in 2009, an 11% increase
since 1998) (J. Butler, The NOAA annual greenhouse gas
index (AGGI), 2010, http://www.esrl.noaa.gov/gmd/aggi/).
[3] Anthropogenic sources of nitrous oxide include

agriculture, fossil fuel combustion, and biomass burning

[California Energy Commission, 2006; Denman et al.,
2007]. Isotopic N2O measurements suggest that agriculture
and associated fertilizer use are the largest anthropogenic
N2O sources globally [Rahn and Wahlen, 2000; Röckmann
et al., 2003]. The atmospheric lifetime of N2O is relatively
long at about 114 years, and the primary sink of N2O is loss
in the stratosphere [Montzka, 2003]. Total annual global
emissions (�17.7 TgN/yr) are approximately 40–50% higher
than in pre-industrial times and continue to rise [Denman
et al., 2007]. As a result, global N2O mixing ratios have
been increasing steadily by about 0.2–0.3% per year (about
0.73 � 0.06 ppb/year or 3.5 TgN/yr) [Hirsch et al., 2006].
[4] Because of the long lifetime of N2O, spatial and tem-

poral changes in N2Omixing ratios are very small and remain
challenging to measure accurately. For example, the seasonal
cycle at Mace Head, Ireland, is only 0.1% relative to the
mean abundance [Hirsch et al., 2006]. The combination of a
long lifetime, diffuse sources, and a low signal-to-noise ratio
in the measurements means that the N2O increment due to
regional sources is very difficult to estimate and verify
[Hirsch et al., 2006]. In addition, the percentage of nitrogen
released as N2O after fertilizer application is very uncertain
and ranges from 0%–7% [Bouwman, 1996]. The diversity of
fertilizer application processes and conditions results in
emissions that show large spatial and temporal fluctuations
and are difficult to constrain. As a result, existing estimates of
N2O emissions (both magnitudes and seasonal trends) are
highly uncertain [Hirsch et al., 2006; Kort et al., 2008, 2010,
2011]. Current emissions estimates over North America, for
example, may be too low by as much as a factor of three
[Kort et al., 2008, 2010].
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[5] The high degree of uncertainty in N2O emissions
complicates efforts to regulate sources under global and
regional climate change agreements. At the global scale, the
Kyoto Protocol included N2O as one of the six greenhouse
gases targeted for reductions. Within the US, several state
and regional regulations target N2O emissions as well
[Committee on the Environment and the Northeast
International Committee on Energy of the Conference of
New England Governors and Eastern Canadian Premiers,
2001; Western Climate Initiative, 2010]. For example, the
Midwestern Greenhouse Gas Reduction Accord, an agree-
ment among 6 states in the midwestern US, recommends a
20% reduction in 2005 greenhouse gas emissions by 2020.
Advisory group recommendations include N2O as one of the
six targeted categories of species [Advisory Group to the
Midwestern Greenhouse Gas Reduction Accord, 2009].
Given uncertainties in emissions estimates that are �20�
larger than reduction goals, it is very difficult at present to
make reliable baseline inventories and track progress toward
designated targets.
[6] Several existing studies provide global to regional-

scale constraints on N2O emissions. Prinn et al. [1990],
Hirsch et al. [2006], Huang et al. [2008], and Kort et al.
[2011] derived top-down emissions constraints over large
global regions. More recent studies provide regional-scale
emissions estimates over Europe [Manning et al., 2003;
Thompson et al., 2011; Corazza et al., 2011;Manning et al.,
2011]. Top-down estimates over North America are more
limited. Kort et al. [2008, 2010] used tall tower and aircraft
data to make continental-scale improvements to existing
emissions estimates for North America. Multiple studies
consistently find northern hemisphere emissions that are
significantly higher than existing inventories [Hirsch et al.,
2006; Huang et al., 2008; Kort et al., 2008, 2010].
[7] The present paper provides detailed spatial and tem-

poral information on the magnitude of N2O emissions over
the United States at much finer resolution than previously
possible. We combine data from a network of tall tower
measurements with high-resolution atmospheric simulations
to provide regional-scale emissions estimates in time and
space, representing important baseline information for green-
house gas regulation.

2. The Model-Data Framework

2.1. Background to the STILT Model

[8] This study relies on STILT, the Stochastic Time-
Inverted Lagrangian Transport Model, for simulations of
atmospheric N2O concentrations. STILT is a particle-
following model based strongly on the HYSPLIT model
[Draxler and Hess, 1998]. STILT releases an ensemble of
imaginary air particles from a receptor point, a single loca-
tion in space and time. For our study, we set up the model to
send 100 particles 10 days backward in time following the
winds in an assimilated mesoscale meteorological model.
The surface sources that these particles encounter are used to
calculate the contribution of continental sources seen at the
receptor point. In particular, STILT assumes that all surface
sources will be well-mixed up to half the modeled boundary
layer height. Particles below this height see influence from
surface sources while those above do not. STILT then cal-
culates an influence footprint based on the number and

duration of particles in this surface layer. The influence
footprint, when multiplied by an emissions inventory and
summed over all geographic regions, provides an estimate
of the continental source signal seen at the receptor. This
continental signal is added to a modeled boundary condition
(i.e. – the mixing ratio in ‘clean’ air before reaching North
America) to estimate the total mixing ratio seen at the
receptor point. The very detailed rendition of mixing ratio
fluctuations provided by STILT can be validated against
individual measurements taken at the receptor (usually a tall
tower or aircraft mission), providing a powerful framework
for assessing upwind surface or volume sources. Previous
studies have applied STILT to a wide range of atmospheric
trace gases, including CO2, CO, methane, and N2O [i.e.,
Gerbig et al., 2003; Lin et al., 2003; Lin and Gerbig, 2005;
Matross et al., 2006; Kort et al., 2008; Miller et al., 2008;
Gourdji et al., 2010; Thompson et al., 2011]. Lin et al. [2003]
and Gerbig et al. [2003] provide a detailed explanation of
STILT model theory and structure.

2.2. Underlying Meteorological Drivers

[9] STILT simulations in this study use Weather Research
and Forecasting (WRF) assimilated meteorological fields
version 2.2 [Skamarock et al., 2005; Nehrkorn et al., 2010]
and the Brazilian Regional Atmospheric Modeling System
(BRAMS v. 3.2) [Pielke et al., 1992; Cotton et al., 2003;
Sanchez-Ccoyllo et al., 2006]. BRAMS simulations (45-km
resolution) were only available for the year 2004. The limited
STILT-BRAMS runs are complemented by STILT-WRF
runs for all time periods.
[10] WRF model simulations use a nested meteorological

grid resolution; 10-km resolution wind fields drive particle
trajectories over most of the continental US and southern
Canada. 40-km resolution wind fields drive trajectories as the
particles travel to more distant regions. This nested wind field
structure affords higher fidelity source attribution near the
receptor while still maintaining reasonable computational
costs. Nehrkorn et al. [2010] provide a full description of the
WRF simulations used in STILT.
[11] BRAMS wind fields (v. 3.2) were based strongly on

the Regional Atmospheric Modeling System (RAMS) [Cotton
et al., 2003] with several updates: new parameterizations for
convection (shallow and deep) and turbulence along with
modified diagnostic outputs to ensure mass conservation to
very high accuracy. All simulations apply a mass conser-
vation fix from Medvigy et al. [2005]. STILT parameterizes
boundary layer turbulence as a Markov chain process [Lin
et al., 2003], and both WRF and BRAMS use a Grell -
Devenyi scheme for convection [Grell and Devenyi, 2002].
BRAMS estimates boundary layer height in accordance with
Vogelezang and Holtslag [1996], and WRF uses a Yonsei
University Scheme [Fast, 2005]. These two approaches give
somewhat different estimates for PBL height and exchange
rates (see section 4.1).

2.3. Emissions Inventories

[12] We pair the STILT model with four different N2O
emissions inventories: EDGAR v. 4.0, EDGAR 32FT 2000,
GEIA, and the Dynamic Land-Ecosystem Model (DLEM)
(see Figure 1). The EDGAR inventories include anthropo-
genic N2O sources (including sources from agriculture) on a
0.1� by 0.1� and 1� by 1� longitude-latitude grid, respectively,
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for v. 4 and 32FT2000 [Olivier and Peters, 2005; European
Commission, Emission database for global atmospheric
research (EDGAR), 2009, http://themasites.pbl.nl/en/
themasites/edgar/index.html]. EDGAR v. 4, incorporated
into STILT at a 1

4
�
longitude by 1

6
�
latitude resolution, is the

more recent, higher-resolution update to EDGAR 32FT2000;
while the newer inventory has a similar spatial distribution,
the estimated magnitude of fluxes is lower. GEIA incor-
porates both anthropogenic and natural sources, also on a 1�
by 1� grid [Bouwman et al., 1995]. All three inventories are
constant in time.
[13] DLEM, a process-based biogeochemical model, esti-

mates N2O from natural sources and from agriculture [Tian
et al., 2010, 2011]. The N2O model simulates nitrification
and denitrification processes as a function of ammonium and
nitrate concentrations, soil temperature, and soil moisture.
According to Tian et al. [2010], DLEMmodel parameters are
then optimized using several Ameriflux sites. Daily emis-
sions estimates are available from 2000–2008 at a 32 km �
32 km resolution (incorporated into STILT on a 1

4
�
by 1

6
�

longitude latitude grid). For all STILT simulations with
DLEM, we supplement the inventory with anthropogenic
source categories from the EDGAR32FT2000 inventory
(i.e. – fossil fuel use, waste handling, water treatment, etc.).

2.4. Model Boundary Condition

[14] The model boundary condition represents N2Omixing
ratios in air that is advected from the Pacific or Arctic Oceans
before entering North America. We construct an empirical
boundary based on measurements from the NOAA cooper-
ative air sampling network. We use monthly mean dry air
mole fractions from 6 monitoring stations (Pacific Ocean
stations 5�, 10�, 15�, 20�, 25�, and Barrow, AK) to build
a time-varying interpolated boundary at 145�W longitude
from the equator to the North Pole. Each particle in the
ensemble is assigned a boundary condition mixing ratio
based on its ending latitude (projected onto the 145�W

boundary). Trajectories that end north of 60� latitude and
east of �120� longitude are assigned mixing ratios from a
northern boundary condition, constructed from measure-
ments at Alert, Canada, and Summit, Greenland, stations.
The estimated boundary condition value assigned to each
trajectory is averaged over the entire ensemble to produce
the final modeled boundary. This latitudinally, zonally, and
temporally varying boundary condition allows the modeled
background concentration to change when changing synoptic
conditions bring air from different regions of the globe. In
contrast to an empirical boundary, we could have used the
output from a global chemical tracer model (CTM) for the
boundary condition. However, known shortfalls in existing
inventories and uncertainties in stratosphere exchange over
longer timescales results in CTM N2O estimates that poorly
match measurements [Kort et al., 2011].
[15] Data are insufficient to create a boundary condition for

the southern edge of the model domain. Weekly N2O mea-
surements at Barbados in fall 2008 suggest that the boundary
concentration estimated for the WKT tower using our Pacific
boundary condition could be too low by up to �0.2 ppb.
A low estimated boundary at WKT would imply a higher
N2O increment from continental sources. As a result, the
flux estimates presented here could consequently be biased
slightly high over the southern US, likely by no more than
25%.
[16] The STILT model does not explicitly account for

dilution of N2O due to the influence of stratospheric air.
Stratosphere-to-troposphere exchange reaches a maximum
during fall through spring and occurs at a much smaller
magnitude during summer [Holton et al., 1995; Sprenger and
Wernli, 2003]. This exchange could influence concentrations
at the receptor sites in two very general ways: through broad-
scale exchange that becomes well-mixed in the troposphere
and through specific “deep exchange” (stratospheric intru-
sion) events. Broad-scale exchange that becomes well-mixed
should be captured by the measurement-based boundary
condition. It would be very difficult to account for deep

Figure 1. Graphical plots of the different N2O emissions inventories for 2000. Because DLEM is a daily
inventory, the plot above shows average fluxes for May–August 2000. EDGAR v.4 and GEIA (not shown)
have similar distributions to EDGAR32 but smaller magnitude (particularly EDGAR v.4).

MILLER ET AL.: UNITED STATES NITROUS OXIDE SOURCES D06310D06310

3 of 13



exchange events, but several indicators might downplay
the importance of these events on eventual surface source
constraints. First, deep exchange events reach a maximum
over the Gulf of Alaska and southern Greenland, areas far
from anticipated N2O sources [Sprenger and Wernli, 2003].
Secondly, any depletion due to deep exchange would result
in low measurements and modeled concentrations that are
too high. This is the opposite of what we see in the actual
model (see section 4.4). Finally, the measurements rarely
drop below the adjusted modeled boundary condition, sug-
gesting a lack of strong stratospheric influence at the surface
sites (e.g., Figures 3 and 8).

2.5. Data Overview

[17] We use two different types of measurement data in the
analysis of N2O emissions: continuous measurements from
LEF tower in Wisconsin and daily flask measurements from
an ensemble of tall tower sites (Figure 2).
[18] Continuous hourly averaged measurements of N2O

are available only at NOAA’s LEF tower site for 5 months
(May–Oct.) in 2004. Despite the limited time frame, the data
nonetheless provide a high resolution test to validate the
STILT-N2Omodel. Measurements at LEF were taken using a
gas chromatograph [Hurst et al., 1997, 1998] and had an
approximate uncertainty of 0.6 ppb. In order to mitigate
significant noise in the hourly averaged data, we apply a
4th order, 22-point Savitsky-Golay moving average filter
[Savitzky and Golay, 1964]. The filter effectively preserves
the magnitude of peaks and troughs on synoptic timescales
in the time series and substantially decreases noise.

[19] In addition to continuous tall tower measurements, we
also draw on a network of daily flask measurements from 4
tall tower sites during 2008. These sites include LEF in Park
Falls, Wisconsin (244 m above ground level); WBI in West
Branch, Iowa (379 m agl); WKT in Moody, Texas (457 m
agl); and BAO in Erie, Colorado (300 m agl). The daily flask
data set begins in 2008 with limited data for 2007. We con-
duct model simulations for the tall tower ensemble over 2008
when both data and meteorological simulations are available.
All flask samples were measured using a gas chromatograph
and electron capture detector and had a reproducibility of
approximately 0.3 ppb. For both hourly and daily data sets,
the measurement uncertainty is 30–60% of the typical sig-
nal from continental surface sources, making it particularly
challenging to derive regional source constraints.

3. Emissions Estimation Methods

3.1. Simple Inventory Optimization

[20] We first discuss data analysis using a simple optimi-
zation of each emissions inventory (i.e., GEIA, EDGAR, and
DLEM). We plot modeled mixing ratios against measure-
ments and fit a linear regression. Variability in the modeled
and/or measured signals should result from the transport of
varying sources from different regions. Hence, the regression
slope provides an approximate corrective scaling factor for
each emissions inventory based on the array of model results
and measurement sites. In addition, the intercept of the
regression can be interpreted as an additive correction to the
modeled boundary condition. We use a reduced major axis
(RMA) method [Miller and Kahn, 1967] to produce a single
scaling factor for each inventory (calculated over all available
towers) for each month in 2008 and for each month of the
available 2004 LEF data set (using WRF and BRAMS winds
separately). An RMA regression accounts for uncorrelated
variance in both the x and y axes. The surface source signal
over the central US is dominated by fluxes from agriculture
(globally �4� the fossil fuel source) [Denman et al., 2007];
agricultural and urban sources are also co-located in some
regions, and therefore we cannot reliably decouple different
source types.
[21] The RMA regression provides the most straightfor-

ward snapshot of seasonality in N2O emissions. Significant
gaps in the data occur at several towers in 2008, specifically
in the winter, spring, and fall months. As such, it is difficult to
produce a reliable spatially variant inversion for time periods
other than summer of 2008. Therefore, we use the regression
method to estimate month-by-month constraints over all of
the tower sites.
[22] We apply a boundary correction to each monthly

inversion simulation based on the regression intercept. The
tall tower data that most strongly constrains the boundary
correction are nearly disjoint from data points that constrain
the sources, so this procedure has little effect on our main
results. If we do not apply a boundary condition correction,
the inversions produce obvious bias in the model-data com-
parisons and unrealistic spatial distributions of the flux fields
(e.g., large emissions over the sea or distant regions).

3.2. Geostatistical and Bayesian Inversions

[23] We use both a geostatistical inversion [Snodgrass
and Kitanidis, 1997; Michalak et al., 2004] and the more

Figure 2. The contour lines indicate the regions that
contribute 75 and 90% of the mixing ratio signal seen at
each of the tall tower sites. The plot reflects the months
of May through August, 2008, and was constructed using
the EDGAR32FT2000 emissions inventory. The tall tower
ensemble sees influence from N2O sources over much of
the central US.
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conventional Bayesian approach [Rodgers, 2000]. The
Bayesian inversion incorporates an a priori emissions inven-
tory, along with the measurements, model results, and
uncertainty estimates. The resulting emissions inventory
optimization (the a posteriori solution) reflects both the a
priori estimate and the model/measurements [Rodgers,
2000]. In many applications, the a priori emissions estimate
provides important, independent information for the inver-
sion, and the inversion improves upon this initial best guess.
In other applications, it can be useful to estimate trace gas
emissions more directly from the atmospheric data without
the help of an a priori estimate (i.e., making as few initial
assumptions as possible). The geostatistical approach is an
inversion that can do just that by using a non-informative
prior. A geostatistical inversion can be most useful when a
priori inventories differ substantially in either magnitude or
spatial structure, as is the case for N2O, indicating significant
errors in the spatial distribution of emissions. In this case, the
a posteriori solution will vary arbitrarily depending on the
highly subjective choice of the prior. It makes sense to learn
as much as possible about N2O fluxes before convolving
the results with the influence of a potentially erroneous prior.
When different priors give very disparate flux estimates, the
geostatistical inversion can inform the choice of prior for
a Bayesian inversion or help to describe the spatial distribu-
tion of emissions using information directly from atmo-
spheric data.
[24] In this study, the geostatistical approach helps us

examine spatial patterns in fluxes independent of disparate a
priori inventories (i.e., DLEM versus EDGAR32FT2000).
We conducted separate geostatistical inversions for each
month during the peak period of fluxes (May–July 2008) on
a resolution of 1� latitude � 1� longitude to minimize spatial
aggregation errors. We focus on the summer time period
because the flask data set was much more sporadic at other
times of year. Section 3.3 provides a more mathematically
rigorous description of the geostatistical approach.
[25] We also conducted comparable monthly Bayesian

inversions during the same time period (May–July 2008).
We use the geostatistical method to help inform our choice
of a priori inventory and then use the Bayesian method to
improve on this best initial inventory estimate.

3.3. Inversion Mathematics

[26] The STILT trace gas model can be written in linear
form as follows [Gerbig et al., 2003]:

z ¼ Hsþ bþ ɛ ð1Þ

z is an n� 1 vector of measurements at the receptor location(s)
(in this case, from a tall tower), s is an m � 1 vector of fluxes
over the entire model domain, and b is an n � 1 vector that
represents the model boundary condition. H, the Jacobian
matrix (dimensions n � m), relates the surface fluxes to the
continental source signal as measured at the tower. Each
column of H describes the statistical influence of fluxes in a
certain grid box on the tall tower site (also known as the
“influence footprint”). In other words, the influence foot-
print converts the emissions inventory from a flux to a
mixing ratio increment seen at the receptor. This footprint
is calculated based on the number of particles that pass over
the grid box and the amount of time the particles spend in

the box.Hs (n� 1) represents the contribution of continental
sources to the mixing ratio at the receptor (in ppb). ɛ is the
model-data mismatch: error caused by model transport,
model resolution, uncertainties in the measurements, and
boundary condition uncertainties (e.g., Gerbig et al. [2003],
Matross et al. [2006], or Gourdji et al. [2010] for the STILT
model).
[27] The solution to the inverse problemminimizes the chi-

squared cost function, somewhat similar to a weighted sum
of squares approach. Equations (2) and (3) give the cost
function for the Bayesian and geostatistical inversions,
respectively.

J sð Þ ¼ 1

2
z�Hsð ÞTR�1 z�Hsð Þ þ 1

2
s� sað ÞTQ�1 s� sað Þ ð2Þ

J s;bð Þ ¼ 1

2
z�Hsð ÞTR�1 z�Hsð Þ þ 1

2
s� Xbð ÞTQ�1 s� Xbð Þ

ð3Þ

R is the n � n model-data mismatch covariance matrix, and
Q is the m � m a priori covariance matrix.
[28] The two inversion approaches differ in their treatment

of the a priori model. The Bayesian method determines the
solution with the maximum probability given the prior esti-
mate and the observations and their range of uncertainties,
defined by R and Q, respectively [Rodgers, 2000]. The
geostatistical method does not include an a priori inventory
(sa) but instead uses a model of the mean (Xb). Each column
of the matrixX (m� p) can describe possible spatial trends in
the data. b is a p� 1 vector of unknown drift coefficients that
scale the columns of X. This model of the mean could, for
example, include information such as land use patterns or
population density (i.e. – “auxiliary variables” [see Gourdji
et al., 2008]). In this study, however, we use do not use
external information in the model of the mean. In other words
X is an m � 1 vector of ones, an uninformative prior. In this
case, the unknown value of b is the a posteriori mean of the
flux field. We want to learn as much as possible about the
fluxes from the atmospheric data alone without the aid of
any prescribed spatial distribution. Instead, the geostatis-
tical method incorporates broad-scale information within
the covariance matrices about the spatial correlation structure
of the fluxes. The diagonal elements of Q define the spatial
variance of the fluxes, and the off-diagonal elements of Q
describe the anticipated spatial covariance of the fluxes
[e.g., Snodgrass and Kitanidis, 1997; Michalak et al., 2004;
Mueller et al., 2008].
[29] For both inversions, we include the 90% influence

region (see section 4.1) in the inversion area as well as all
land area further west. The data do not fully constrain emis-
sions as far away as theWest Coast, but we included theWest
to avoid biasing the a posteriori flux field due to the cumu-
lative effect of distant emissions. We excluded water bodies
from the inversion. Globally, the ocean is a significant source
of N2O, diffusely spread over large areas [Nevison et al.,
2004; Denman et al., 2007]. However, any fluxes assigned
to the ocean by the inversion would more likely reflect
boundary condition uncertainties than actual sources and our
boundary condition correction should account for the effects
of any broad-scale coastal upwelling fluxes.
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[30] The analytical solutions to both Bayesian and geosta-
tistical inversions are calculated via a system of linear equa-
tions. The solution to the Bayesian approach for the STILT
model is described by Gerbig et al. [2003] and Miller et al.
[2008], and the solution to the geostatistical inversion is
described in detail by Snodgrass and Kitanidis [1997] and
Michalak et al. [2004].

3.4. Covariance Matrices

[31] The covariance matrices (Q and R) provide crucial
information that describes the structure of the a posteriori
flux field and/or the relative uncertainties in the inversion
inputs. These matrices must be estimated independent of the
inversion and are often inferred from the atmospheric data
itself [Kitanidis and Lane, 1985; Kitanidis, 1995; Michalak
et al., 2005]. Mathematically, the individual elements of R
and Q are defined as follows:

Ri; j ti; jjsR; tR
� � ¼ s2

Rexp � ti; j
tR

� �
ð4Þ

Qi; j hi; jjsQ; l
� � ¼ s2

Qexp � hi; j
l

� �
ð5Þ

sR
2, the diagonal elements of R, represent the variance of the

errors caused by model-data mismatch. This includes uncer-
tainties due to the measurements, the forward model, model
representation (e.g., aggregation of discreet flux regions), and
uncertainties in the boundary condition. In this case, we
estimate a single model-data mismatch error over all towers
for each month. The off-diagonal elements are the covar-
iances which decay exponentially in time (ti, j) according to
the temporal decorrelation in model-data mismatch errors
(tR). We constructed a first order autoregressive model on the
difference between model and measurements and found a
decorrelation time of 4–10 h for hourly data at LEF with the
WRF model (depending on the data interpolation method
used). This is smaller than the daily measurement frequency
in the ensemble data, so we do not include temporal corre-
lations in model-data mismatch (off-diagonal elements of R).
We also assume zero error correlation among observations at
different tower sites.
[32] The a priori covariance matrix takes on a similar form.

For the geostatistical inversion, the diagonal elements (sQ
2 )

give the anticipated variance of the fluxes, and for the
Bayesian inversion, they describe the uncertainty in the a
priori inventory. The off-diagonal elements of Q decay
exponentially with distance (hi, j) according to the decorr-
elation length parameter (l). In the case of the geostatistical
inversion, l describes spatial correlation in the flux field
while for the Bayesian inversion, l describes the spatial cor-
relation of uncertainties in the a priori inventory. Spatial
correlation becomes negligible at distance 3l.
[33] We infer most of the covariance matrix parameters

from the atmospheric data itself using Maximum Likelihood

(ML) and Restricted Maximum Likelihood (RML) methods.
In this case, we apply the RML method to infer geostatis-
tical inversion parameters [Kitanidis, 1995; Snodgrass and
Kitanidis, 1997] and the ML method to infer Bayesian
inversion parameters [Kitanidis and Lane, 1985; Michalak
et al., 2005]. These closely related techniques provide
objective ways to infer any number of inversion parameters.
The most likely parameters are those that minimize a given
cost function and are normally estimated using an iterative
Gauss-Newton algorithm. ML and RML ensure that the
reduced chi-squared value of both the model/measurements
and fluxes are close to one. This implies that the errors in
the a posteriori model are consistent with those estimated
by the covariance parameters [e.g., Michalak et al., 2005].
It is important to note, however, that ML and RML can
produce unreliable inversion parameters when either the
data are sparse or the model/measurement errors are large
[Mueller et al., 2008; Gourdji et al., 2010].
[34] This latter concern becomes important in the inversion

setup here. In cases where we cannot infer inversion para-
meters from the atmospheric data, we infer these values from
auxiliary data sets. For example, we assume that the posterior
fluxes and errors in the a priori inventory will be correlated
over a length scale (l) similar to that of agricultural land use
patterns (inferred from cropland maps using RML in kriging
form) [Mueller et al., 2008; Ramankutty et al., 2008]. Exist-
ing emissions inventories of N2O, corrected in magnitude in
accordance with Kort et al. [2008], provide an estimate of sQ
for the geostatistical inversion (again using RML in kriging
form). Additionally, we use the difference between the
standard and corrected inventory from Kort et al. [2008] for
sQ in the Bayesian setup. Table 1 lists the full set of para-
meters used in the geostatistical and Bayesian setups.

4. Results and Discussion

4.1. Model Results: An Overview

[35] The STILT model appears very adept at reproducing
high resolution N2O concentration data for a range of dif-
ferent receptor sites. The hourly data from LEF Tower in
2004 demonstrate the model’s ability to reproduce high res-
olution measurements (see Figure 3). In this case, we ran the
model using both the WRF and BRAMS meteorological
drivers. STILT achieves model-measurement correlation as
high as R = 0.76 (for EDGAR32FT2000), though correla-
tions for other inventories can be lower (R = 0.48 for DLEM)
(see Table 2). The time series in Figure 3 displays the model
result for both the BRAMS and WRF-driven models after
optimization.
[36] Before fully discussing the source optimization results,

it is first important to highlight the differences in STILTmodel
runs with BRAMS versus WRF meteorological drivers. In
general, the BRAMS runs produce a slightly better model-
measurement fit than WRF (R = 0.76 and 0.73, respectively,
for EDGAR32FT2000), though this difference in fit is only

Table 1. Covariance Matrix Parameters for the Geostatistical and Bayesian Inversions

sR_MAY sR_JUN sR_JUL l (km) sQ

Geostatistical 0.71 � 0.05 0.97 � 0.05 0.70 � 0.04 816 � 313 (4.5 � 3) � 10�4

Bayesian 0.72 � 0.05 0.99 � 0.05 0.73 � 0.04 816 � 313 (3.7 � 2) � 10�4
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significant in the cases of EDGAR32 and GEIA (p = 0.01 in
both cases). Secondly, when using the same flux fields,
STILT-WRF runs produce modeled mixing ratios that are
systematically lower than those produced by STILT-BRAMS,
statistically significant for all inventories. This difference
appears to stem from the fact that particle trajectories in
WRF-driven simulations reach greater altitudes more quickly
than in BRAMS simulations and therefore see the influence
of surface sources over a shorter interval. For example, in
Figure 4, the average influence footprint of WRF and
BRAMS simulations is initially the same. However, the sur-
face influence drops to lower values on days 2–4 for WRF,
likely because particles move out of the planetary boundary
layer (PBL) a bit faster, and thus lower mixing ratios modeled
at the receptor. During the first day, and in the far field, the
footprints are similar and the overall mean footprints differ by
15–20%.
[37] WRF and BRAMS also display different nighttime

mixed layer heights (�30 m for WRF and 250 m for
BRAMS). STILT can set systematically different nighttime
mixed layer heights, and differences in estimated concentra-
tions among model versions with different nighttime mixed
layers appears to be minimal. Resolution of the discrepancy
in particle heights between WRF and BRAMS is beyond the

scope of this paper but would be a significant subject to
improve the transport model uncertainties.
[38] In addition to differences in meteorology, we also

examined possible differences in the model during the
afternoon versus nighttime at LEF in 2004. We optimized
mid-afternoon (18–23 UTC) and nighttime (6–14 UTC) data
points separately using the RMA regression for each month
and each meteorological driver. The inventory correction
factors were usually similar, within 5% for afternoon versus
nighttime measurements and almost never differed by more
than 15%. Evidently, agricultural sources affecting LEF are
large area sources and are dominated by synoptic-scale flow.
[39] The emissions constraints presented here apply mostly

to the Great Plains corridor and western Great Lakes of the
United States. Figure 2 shows the mean “regions of influ-
ence” for the 2008 tall tower ensemble model runs. At each
geographic grid square, we multiply the footprint by the
EDGAR 32FT2000 emissions inventory. The result is the
mixing ratio increment that each grid cell contributes to
the measured signal at the tall tower site. The contour
lines provide an estimate of the geographic regions that
contribute 75 and 90% of the mean trace gas signal seen at
the tall tower sites. Figure 2 shows that the 2008 tall tower
ensemble is most sensitive to fluxes across the central

Figure 3. STILT model results for hourly observations at LEF Tower in Park Falls, WI, with two different
meteorological drivers. Each result is optimized with a reduced major axis regression and smoothed with a
Savitsky-Golay filter.

Table 2. Emissions Inventory Correction Factors and Model-Measurement Correlation Coefficients for 2004 Calculated Using an RMA
Regression Based on Hourly LEF Tower Nitrous Oxide Measurements

Inventory Meteorology

Inventory Correction Factors

RMay Jun Jul Aug Sep Oct

EDGAR32FT2000 BRAMS 2.5 � 0.2 2.6 � 0.1 1.5 � 0.1 1.5 � 0.1 1.3 � 0.1 1.4 � 0.1 0.76
WRF 3.7 � 0.2 3.4 � 0.2 1.6 � 0.2 1.9 � 0.2 1.2 � 0.1 1.4 � 0.1 0.73

EDGARv4 BRAMS 4.4 � 0.3 4.8 � 0.3 2.6 � 0.2 2.7 � 0.2 2.3 � 0.2 2.5 � 0.2 0.76
WRF 6.2 � 0.3 6.1 � 0.4 2.7 � 0.2 3.5 � 0.3 2.2 � 0.2 2.4 � 0.2 0.74

GEIA BRAMS 3.7 � 0.2 4.1 � 0.2 2.5 � 0.2 2.3 � 0.2 2.0 � 0.2 1.9 � 0.1 0.76
WRF 5.1 � 0.3 5.5 � 0.4 2.4 � 0.2 2.9 � 0.3 1.8 � 0.2 2.0 � 0.2 0.73

DLEM BRAMS 1.7 � 0.1 1.1 � 0.1 0.90 � 0.1 0.66 � 0.06 0.50�0.05 1.3 � 0.1 0.52
WRF 2.2 � 0.2 1.3 � 0.1 0.85 � 0.06 0.94 � 0.09 0.63�0.06 1.1 � 0.1 0.48
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corridor of the United States. A similar plot for the 2004
LEF data set (not shown) produces a region of influence that
covers the corn belt and northern plains states. Hence, the
model inversions that follow in this paper predominantly
provide constraints for the central US.

4.2. Seasonality of N2O Emissions

[40] We construct a reduced major axis regression for the
2008 daily tall tower ensemble data in order to make broad
monthly corrections to existing inventories (see Table 3).
Figure 5 shows the monthly emissions inventory corrections
taken over the entire ensemble of all tower sites. Note that
January and February are lumped together because there
were only 15 days of model runs for the former month. Also,
we did not compute an inventory correction for March
because two of the four towers did not report any data.
[41] The results from the entire ensemble provide impor-

tant information about the seasonal cycle of N2O over the
central US in 2008. Note that since DLEM is a daily inven-
tory, it includes estimated seasonality while GEIA and the
EDGAR inventories only provide yearly emissions totals.
Our study shows strongly seasonal fluxes that peak in June
and fall off at similar rates on either side of the peak. The
scaling factors for DLEM represent corrections to the sea-
sonality already included in the inventory. These scalers
indicate that DLEM overestimates fluxes during late summer
relative to other months and slightly underestimates sources
early in the year. The DLEM adjustment for December is

anomalous. The inventory in December is 25% lower than in
either November of January, and inventory sources during
this month shift somewhat eastward, explaining the anomaly
at least in part.
[42] Modeled footprints change slightly from one month to

another, and some months lack measurements from one or
more towers. Hence, scaling factors for each month could be
weighted toward certain regions because of missing towers or
seasonal changes in synoptic transport. As a result, the above
constraints represent both seasonal changes in surface sour-
ces and any artifacts from data availability and seasonal
footprint variations.

4.3. Location of N2O Emissions

[43] Different N2O emissions inventories exhibit very dif-
ferent spatial patterns (see Figure 1). EDGAR inventories
place the largest sources over the US Cornbelt (i.e., Iowa,
Illinois, etc.) while DLEM places high emissions in more
westerly (e.g., Kansas and Nebraska) and southerly areas
(e.g., Texas, Arkansas, Kansas). The geostatistical inversion
provides a very transparent way to learn about the spatial
distribution of the fluxes based on atmospheric data inde-
pendent of existing emissions inventories. We conducted the
geostatistical inversion for three different months (May–July,
2008) using STILT-WRF.
[44] Figure 6 shows the a posteriori flux fields for May,

June, and July, along with associated a posteriori uncertainties
as estimated by the geostatistical inversion. We conducted
the inversion over a large region that includes most of the

Figure 4. The mean footprint of particles (in ppm/mmol m�2

s�1) by time away from the LEF tower (2004) for both
BRAMS and WRF. BRAMS sees a larger footprint than
WRF between 0.5–6 days away from the tower.

Table 3. Emissions Inventory Correction Factors for 2008 Calculated Using an RMA Regression Based on an Ensemble of Tall Towers

Inventory

Inventory Correction Factors

Jan/Feb Apr May Jun Jul Aug Sep Oct Nov Dec

EDGAR32 1.1 � 0.1 2.6 � 0.4 2.8 � 0.4 5.4 � 0.6 3.5 � 0.4 2.2 � 0.3 1.5 � 0.3 1.1 � 0.2 1.1 � 0.2 1.3 � 0.2
EDGARv4 1.3 � 0.2 4.1 � 0.7 5.1 � 0.7 10.1 � 1.2 5.7 � 0.7 3.8 � 0.5 1.14 � 0.2 1.0 � 0.2 1.1 � 0.2 1.8 � 0.3
GEIA 1.9 � 0.2 3.1 � 0.5 3.0 � 0.5 4.5 � 0.7 3.9 � 0.6 2.0 � 0.3 2.1 � 0.4 1.4 � 0.2 1.2 � 0.2 1.6 � 0.2
DLEM 3.3 � 0.4 2.9 � 0.5 2.3 � 0.4 2.1 � 0.3 0.9 � 0.1 0.29 � 0.04 0.88 � 0.18 0.83 � 0.13 1.2 � 0.2 4.9 � 0.7

Figure 5. Corrective emissions inventory scaling factors
produced by the RMA regression for the ensemble of 2008
tall tower data.
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Figure 6. Monthly a posteriori fluxes and associated uncertainties (a posteriori standard deviations) esti-
mated for the geostatistical inversion. This plot is made using different colors from Figure 1 and on different
scales to better highlight spatial trends.
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continental US and Canada but show results only for the area
within the 75% influence region of the tower sites (see
Figure 6). The results of the inversion strongly indicate large
N2O sources over the US Corn Belt (i.e., Iowa, Illinois, etc.).
This source region continues to the northwest into North
Dakota with a diminished magnitude, and emissions taper off
quickly moving westward into Colorado, Wyoming, and the
western Plains States.
[45] With limited atmospheric data, the Bayesian inversion

cannot fully correct discrepancies in spatial distribution
among inventories. In this case, the geostatistical inversion
can inform our choice of a priori inventory. Based both on the
geostatistical simulations and the 2004 measurement-model
correlations, we select EDGAR32FT2000 as the best a priori
inventory for the Bayesian inversion. The EDGAR invento-
ries and GEIA place major sources over the Corn Belt, in
agreement with the geostatistical simulations, while DLEM
places the largest sources elsewhere. The EDGAR and GEIA
inventories also produce the highest model-measurement fit
(R2), and EDGAR32FT2000, in specific, requires less mag-
nitude correction than either GEIA or EDGAR v. 4.

4.4. Magnitude of N2O Emissions

[46] The following section details the results of the
Bayesian inversion to improve upon existing N2O emissions
inventories and details estimated emissions budgets from the

variety of statistical methods. While the geostatistical setup
aimed to discern large scale spatial patterns, the Bayesian
setup described here leverages the best existing inventory to
produce a more spatially resolved estimate of fluxes. The
inversion was conducted for May, June, and July, the months
with peak N2O fluxes and with nearly complete tall tower
data sets. Figure 7 plots the EDGAR32FT2000 a posteriori

Figure 7. The a posteriori source estimates for N2O using the EDGAR32FT2000 inventory in a Bayesian
inversion framework (for May – July 2008). Each month is plotted on a different scale to better highlight
spatial patterns.

Figure 8. An example of the STILT model result at
LEF tower with both the a priori and a posteriori
EDGAR32FT2000 inventories.
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inventory from the Bayesian inversion, and Figure 8 shows
an example of the modeled time series from the LEF tower.
The results look somewhat similar to the geostatistical setup
but are less dispersive and have more spatial detail.
[47] The inversions and regressions suggest sources that

are significantly larger than in either EDGAR or GEIA for
nearly all geographic regions and times of year. Interestingly,
estimated emissions in the newest release of EDGAR (v. 4)
are lower than previous releases, requiring even larger mod-
ification. Table 4 displays monthly N2O budgets from the
inversions and RMA regressions for both 2004 and 2008.
Using the RMA regression for the 2008 ensemble of tall
tower sites, we estimate an annual N2O budget of 1.0–1.2
TgN/yr for the inversion region. If we divide these results
by the percentage of fluxes in the inversion region (see
Table 5), we can extrapolate to the entire US and Canada.
The resulting budget estimate for the United States and
Canada is 2.4–2.6 TgN/yr. This range of estimates reflects
the results of different starting inventories (the EDGAR and
GEIA inventories). The different methods produce slightly
different budget estimates, in some part due to uncertainties
in the boundary condition. The inversions, for example,
apply a single boundary condition correction for the entire
summer period whereas the regressions calculate a unique
intercept for each month.
[48] Differences in the meteorological drivers modestly

widen the uncertainty bounds on the budget estimate.
Optimal fluxes on average were 12% lower when using
BRAMS. The mean scaling factor for EDGAR 2000 over
the year is 2.2 for WRF and 1.8 for BRAMS. If we extrap-
olate to the 2008 data set, this result suggests that BRAMS
would yield a budget of �1 TgN/yr over the central US and
�2.2 TgN/yr over the US and Canada.
[49] The budget numbers presented here compare well to

those estimated in previous top-down studies over North
America, notably those by Kort et al. [2008, 2010]. These
studies estimated a US and Canada N2O budget of 0.23 TgN/
month for spring and summer months in 2003 and 2004.
This compares to a peak June US and Canada budget of
�0.22–0.35 TgN/yr presented here across a variety of dif-
ferent source optimization methods. Our annual budget
number for the US and Canada corresponds to 13–15% of
the total global source, or 36–39% of the global anthropogenic

source (12–13% and 32–34% using BRAMS, respectively)
as reported by the IPCC [Denman et al., 2007].

5. Conclusions

[50] This study captures nitrous oxide sources over the
agricultural belt of the United States at more highly resolved
spatial and temporal scales than previous estimates. A
diverse set of statistical tools, from a simple regression to
Bayesian and geostatistical inversions, provide a closer look
at three different aspects of emissions: seasonality, location,
and intensity. The largest sources appear over the US Corn-
belt (i.e., Iowa, Illinois, Indiana, southern Minnesota, etc.)
with smaller sources likely extending into the Dakotas. This
result is consistent with the spatial patterns in the EDGAR
and GEIA inventories. N2O emissions peak in June and taper
off quickly both before and after, a seasonality largely
missing from existing inventories. The choice of meteo-
rology for the transport model had a significant influence
(12 � 6%) on the estimated total emissions, with relatively

Table 4. N2O Budget Information for 2004 and 2008 Data Sets for the Inversion Region Shown in Figure 5 (in TgN/Month)a

May Jun Jul Aug Sep Oct

LEF Tower 2004 (RMA) 0.12–0.18 0.12–0.19 0.073–.089 0.073–0.11 0.056–0.068 0.065–0.075
Ensemble 2008 (RMA) 0.11–0.15 0.16–0.29 0.14–0.17 0.070–0.11 0.032–0.074 0.031–0.054
Ensemble 2008 (Geostatistical) 0.11 � 0.08 0.18 � 0.08 0.13 � 0.07
Ensemble 2008 (Bayesian) 0.11 � 0.07 0.18 � 0.06 0.13 � 0.06

aThe ranges in 2004 and 2008 RMA reflect different inventories and meteorological drivers while 2008 geostatistical- and Bayesian-derived budgets
include a posteriori uncertainties calculated by the respective inversions.

Table 5. The Percentage of a Priori N2O Fluxes in the United
States and Canada That Lie Within the Inversion Region as
Displayed in Figure 6

EDGAR32 EDGAR v.4 GEIA DLEM

Percentage (%) 51 48 40 39

Figure 9. An estimate of annual fertilizer use taken from
Potter et al. [2010]. The a posteriori N2O fluxes from both
the geostatistical and Bayesian inversions are strongly simi-
lar to the spatial distribution of nitrogen fertilizer. Potter et al.
[2010] estimate manure application for 2007 and synthetic
fertilizer for 2000.
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small effect on our derived spatial distribution and little
impact on the derived seasonal variation. We estimate a
budget over the central US of 1.0–1.2 TgN/yr using WRF
meteorology (0.9–1.1 using BRAMS), a source that is nota-
bly larger than the EDGAR and GEIA inventories. Of par-
ticular note, the newest release of EDGAR (v. 4), decreases
the source strength over previous EDGAR estimates, a revi-
sion that is inconsistent with the atmospheric data.
[51] The sources inferred from the tall tower measurements

show striking similarity to the anticipated spatial and tem-
poral distributions of fertilizer application and corn produc-
tion, supporting the view that fertilizer plays a dominant role
in generating N2O emissions over the central US (see
Figure 9). Both fertilizer use and N2O emissions correspond
strongly with the distribution of corn production (not shown),
likely due to the magnitude of corn production and high
fertilizer use relative to other crops (Food and Agriculture
Organization of the United Nations, Plant Production Pro-
tection Division, Fertistat: Fertilizer Use Statistics, 2007,
http://www.fao.org/ag/agl/fertistat/; USDA National Agricul-
tural Statistics Service, Charts and Maps, County Maps, 2010,
http://www.nass.usda.gov/Charts_and_Maps/Crops_County/
index.asp). Given this correspondence between corn and N2O,
the potential for significant agricultural greenhouse gas emis-
sions are important to consider when weighing the costs and
benefits of corn subsidies and ethanol production.
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