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Abstract To accurately assess the roles of agriculture in securing food security and maintaining
environmental sustainability, it is essential to improve the representation of crop growth, development,
and yield formation in global land models that traditionally focus on energy, water, carbon, and nitrogen
exchanges between land and the atmosphere. In this study, a process-based agricultural module has been
coupled with the Dynamic Land Ecosystem Model (DLEM-AG2.0) for assessing how multiple environmental
factors (climate change, atmospheric CO, concentration, tropospheric Os, and nitrogen deposition) and
human activities (land use/cover change, nitrogen fertilizer use, and irrigation) have affected the crop
growth, development, yield, carbon (C), nitrogen (N), and water cycles in agroecosystems. Here we describe
the model structure for simulating crop growth, development, and yield formation in the DLEM-AG2.0, and
then we validate the model using field observations and a national yield survey for three major crops
(wheat, maize, and rice) in China during 1980-2012. Results show that the DLEM-AG2.0 is capable of
simulating the dynamic processes of phenological development, leaf growth expansion, biomass
accumulation, biomass allocation, and yield formation for wheat, maize, and rice with normalized root mean
square errors of the simulations of less than 20%. Our model-based yield estimation for the three major crops
at the national scale for the period 1980-2012 is generally consistent with the national yield survey in
China. The crop representation in the DLEM-AG2.0 is flexible for extrapolating to a global scale after rigorous
testing with both site-specific and regional observations. Further advancement of agricultural modeling
within the global land modeling framework will require consideration of human perception and behavior for
adapting and mitigating global change.

1. Introduction

Agriculture plays controversial roles in increasing the food supply to meet the growing human demand
(Borlaug, 2007) while also releasing large amounts of greenhouse gases to the atmosphere (Tian, Lu, et al.,
2016). Humans have influenced 42-68% of the land surface through agriculture, wood harvesting, and graz-
ing activities (Hurtt et al., 2006). Globally, approximately 12% of the land surface is currently used for the agri-
cultural sector (Food and Agriculture Organization, 2017). Both natural and human-induced environmental
changes have notably influenced crop growth and yield in intricate ways—interacting with each other and
having a combined impact on the agricultural sector (Schindler, 2001). Conversely, agriculture can have a sig-
nificant influence on climate change by altering the surface fluxes of greenhouse gases, albedo, and heat
fluxes (Drewniak et al., 2013; Levis et al., 2012). For instance, irrigation and conservation tillage on croplands
resulted in a regional or global cooling effect, exerting special strong effects on precipitation, cloud cover,
and radiation (Cook et al., 2014; Diffenbaugh, 2009; Guimberteau et al., 2012; Lobell et al., 2006; Lobell &
Field, 2007). However, emissions of non-CO, greenhouse gases (CH, and N,O) from agriculture could totally
offset the terrestrial carbon sink, warming the climate (Tian, Lu, et al., 2016). Thus, to fully understand the roles
of agriculture in the climate system and food security, assessing and predicting crop production and its
consequences on climate and the environment from an Earth system perspective are essential (Drewniak
et al, 2013; McDermid et al.,, 2017).

Two separate modeling groups exist for simulating crop growth and yield. First, multiple decades of efforts in
crop modeling have created a number of crop models such as EPIC (Erosion Productivity Impact Calculator;
Cole et al., 1987), DSSAT (Decision Support System for Agrotechnology Transfer; Uehara & Tsuji, 1991), ORYZA
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(Bouman et al., 2001), CERES (Crop Environment REsource Synthesis; e.g., Jones & Kiniry, 1986), and APSIM
(Agricultural Production Systems sIMulator; Keating et al., 2003; Mccown et al.,, 1996). These crop models
are good for quantifying crop physiological and phenological processes. For example, based on crop variety,
climate, soil conditions, and management practices, the crop models are capable of simulating the dynamic
of crop growth, development, seed formation, and yield (Okada et al., 2015). However, most of them (e.g.,
ORYZA, DSSAT, and APSIM) are site-based, farmer-oriented, and lacking in adequate representation of
biogeochemical and hydrological cycles, and they rarely have been applied at regional or global scales.

Conversely, a number of large-scale regional and global land models have explored the effects of global
change on crop growth and its feedback to climate through a simplistic representation of crops, such as gen-
eric crop-like grasses (sometimes distinguished by their photosynthetic pathways; Pitman et al.,, 2009).
However, relative to grasslands, cropland has different biogeophysical and biogeochemical characteristics
due to the agricultural managements (e.g., fertilizer and irrigation) and should include more realistic phenol-
ogy (McDermid et al,, 2017). To address the complexity of crop growth and biogeochemical cycles, much
effort has been made to better represent agriculture in a global land modeling framework (Bondeau et al.,
2007; Kucharik, 2003; Levis et al., 2012; Osborne et al., 2006; Ren et al., 2012; Smith et al., 2010). Some more
sophisticated crop models have been incorporated into Earth system models. For instance, Osborne et al.
(2006, 2009) performed global simulations by using the Hadley Centre Atmosphere Model, version 3
(HadAM3) with a crop model GLAM (General Large-Area Model for annual crops; a warm climate crop model)
in the land component, to examine the interactive effect of crop phenology on tropical climate variability.
However, the simulation did not include explicit residue management and crop organ development, which
are major uncertainties in climate simulation (Drewniak et al., 2013; lizumi et al.,, 2014; Levis et al., 2012).
Recently, Drewniak et al. (2013) developed an approach to integrate agriculture representations for three
crop types—maize, soybean, and spring wheat—into a coupled carbon-nitrogen version of the CLM (CLM-
Crop; Community Land Model, Levis et al., 2012), which has added nitrogen cycling (nitrogen retranslocation,
and soybean nitrogen fixation) and management practices (fertilizer and residue harvest). Leng et al. (2016)
had used an improved CLM-Crop to simulate county-level crop yields by optimizing irrigation and fertilization
in the United States.

Although these more advanced representations of crop growth in global land models have improved the
simulation of agricultural ecosystems, some critical processes and drivers are still poorly represented, for
example, (1) multifactor-driven changes in C fluxes and pools, (2) process-based crop phenology develop-
ment and dynamic biomass allocation, and (3) crop rotation and tillage practices. These processes and
drivers are underrepresented, in part, due to a lack of long-term large-scale spatial data sets of cropland
management measures (including an irrigation and fertilizer application database); failure to combine land
ecosystem model and process-based crop models; and the failure to consider multiple environmental factors.
Therefore, to reduce uncertainty in estimating crop yields at a large scale, the development of a process-
based crop module within global land models is needed, as well as using relevant regional databases to drive
the models. The databases should include the major environmental factors that influence crop growth and
development in the agroecosystems.

In this study, building on the previous version of the agricultural module in the Dynamic Land Ecosystem
Model (DLEM-Ag, Ren et al., 2012; Tian et al., 2012), we have developed a new version of the DLEM-AG2.0
agroecosystem model, to help understand the impacts of multifactor environmental changes on crop
growth, development, and yield. The DLEM-AG2.0 is a spatially explicit, process-based agroecosystem model
representing the influences of agronomic practices and environmental factors on crop phenology, growth
and development, yield, and biogeochemical and hydrological processes. It is capable of simulating the
dynamic processes of phenological development, leaf area growth expansion, main growth stages, biomass
accumulation, biomass allocation, and organ formation for wheat, maize, and rice, as well as the interactive
effects of climate and soil on these crop yield and feedback processes. As a case study, we applied this new
model version to China’s cropland for verifying the model’s ability to simulate crop growth and yield in the
context of multiple environmental stresses. China’s cropland accounts for approximately 7% of the world’s
arable land but supports 22% of the global population (Ren et al., 2012). In recent decades, China’s agricul-
tural ecosystems have been affected by a complex set of environmental stresses originating from climate,
chemical composition of the atmosphere (e.g., CO,, tropospheric O3, and nitrogen deposition), land use
and cover change, and agriculture management practices (e.g., fertilizer and irrigation uses; Tian, Melillo,
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Figure 1. Key components of the Dynamic Land Ecosystem Model (DLEM) and its linkage to the climate and human systems (Tian, Liu, et al,, 2010).

etal, 2011). As China is one of the most intensively studied regions in the world, substantial data sets on crop
distribution, soil properties, farming practices, climate, and land use/cover change are available for building
long-term and high-resolution regional databases (e.g., Lu & Tian, 2007; Ren et al,, 2007; Yan et al., 2005).
These data sets can be used to drive the DLEM-AG2.0 for simulating crop yield in responses to multiple envir-
onmental changes. Therefore, China is ideal for verifying our new agroecosystem model.

The purpose of this paper is to (1) provide detailed information on the DLEM-AG2.0 algorithms; (2) evaluate
model performance against field observations of phenology, leaf area index (LAl), biomass, and yield at the site
level; (3) examine responses of crop growth and yield to multiple environmental changes at the national level;
and finally, (4) discuss uncertainty and future research needs in agroecosystem modeling and simulation.

2. The DLEM

The DLEM is a highly integrated, process-based terrestrial ecosystem model that simulates the structural and
functional dynamics of terrestrial ecosystems affected by multiple factors, including climate, atmospheric
composition (CO,, nitrogen deposition, and tropospheric ozone), land use and cover change, and agriculture
management practices (e.g., harvest, rotation, irrigation, and fertilizer use; Tian, Chen, et al., 2010; Tian, Liu,
et al., 2010). The DLEM has five core components: (1) biophysics, (2) plant physiology, (3) soil biogeochemis-
try, (4) vegetation dynamics, and (5) land use and management (Tian, Chen, et al,, 2010; Tian, Liu, et al,, 2010).
The DLEM simulation results have been extensively calibrated and validated using many field observations
and measurements in typical vegetation types including forest, grassland, and cropland at the site level
(Lu & Tian, 2013; Ren et al., 2011; Tao et al., 2014; Tian, Chen, et al., 2010; Tian, Melillo, et al., 2011). The
DLEM-estimated fluxes and the storage of water, carbon, and nutrients have been compared with the
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Figure 2. Framework of the agricultural module in Dynamic Land Ecosystem Model (DLEM-AG2.0). The conceptual framework describing the main components of
the soil-plant-atmosphere continuum and the key parameters related to phenology, canopy cover, transpiration, biomass production, and final yield (Tmin,
minimum temperature for photosynthesis; Topt, optimum temperature for photosynthesis; Tmax, maximum temperature for photosynthesis; ETo, reference
evapotranspiration; EVA, soil evaporation; TRAN, canopy transpiration; Gs, stomatal conductance). Continuous lines indicate direct links between variables and
processes. Especially, red lines indicate biomass allocation. Dashed lines indicate feedbacks.

estimates from other approaches, such as statistical-based empirical modeling, top-down inversion, or
other process-based modeling approaches, at regional, continental, and global scales (Pan et al., 2014,
2015; Tian, Lu, et al,, 2016; Tian, Ren, et al,, 2016; Yang et al., 2014). The DLEM model has been used in
China (Lu & Tian, 2007; Lu et al, 2012; Ren et al., 2007, 2012; Tian, Melillo, et al., 2011; Tian, Xu, et al.,
2011), the United States (Song et al., 2013; Tian, Chen, et al., 2010; Tian et al., 2012), and North America
(Tian, Chen, et al., 2015; Xu et al., 2010). The detailed information on how the DLEM simulates these pro-
cesses is shown in Tian, Liu, et al. (2010). Recently, the model was updated to the DLEM 2.0 (Figure 1),
which is characterized by the cohort structure; multisoil layer processes; coupled carbon, water, and nitro-
gen cycles; multiple GHG (CO,, CH,4, and N,0) emissions; enhanced land surface processes, such as vegeta-
tion dynamics and soil moisture movement, which improved the representation of the surface
heterogeneity; and the dynamic linkages between terrestrial and riverine ecosystems (Liu, Evans, et al,,
2013; Liu et al,, 2008; Liu, Tian, et al.,, 2013; Pan et al,, 2014, 2015; Tian, Ren, et al., 2016; Tian et al., 2014;
Zhang et al., 2016). In this paper, we present the improved agroecosystem model (DLEM-AG2.0), which
simulates crop growth and development responses to the natural environment (radiation, temperature,
etc.), soil water and soil nitrogen, and management practices in a daily time step (Figure 2).

2.1. Development of the New Agroecosystem Model (DLEM-AG2.0)

The new version of the agroecosystem model (DLEM-AG2.0) was improved based on the previous DLEM-Ag
module (Ren et al,, 2011, 2012; Tian et al,, 2012). Although the DLEM-Ag incorporated the influences of
agronomic practices on crop growth and phenology and other biogeochemical processes (Ren et al., 2011,
2012; Tian, Ren, et al., 2016; Tian et al., 2012), the DLEM-Ag has not fully represented crop growth, develop-
ment, allocation, seed formation, and yield. The improved version of DLEM-AG2.0 has adopted some
key features from well-established crop models (e.g., EPIC, DSSAT, ORYZA, CERES, and APSIM; Bouman
et al,, 2001; Cole et al,, 1987; Jones & Kiniry, 1986; Keating et al., 2003; Mccown et al., 1996; Uehara & Tsuji,
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1991) as subsequently described. In DLEM-AG2.0, the natural vegetation and crops in a model grid can be
simulated simultaneously.

The DLEM-AG2.0 simulates phenological development, leaf area growth, and C and N contents in the differ-
ent parts of crop (leaf, stem, root, and grain) at a daily time step, and finally outputs the crop yield. Crop
photosynthesis, growth, and development are controlled by multiple factors including climate (temperature,
precipitation, solar radiation, and relative humidity), atmospheric chemistry (CO,, Os, N deposition, etc.), soil
water and nutrient availability, and management practices (N fertilizer use, irrigation, tillage). Crop life cycle is
separated into eight stages (i.e., sowing, emergence, floral initiation, flowering, start of grain filling, end of
grain filling, maturity, and harvest) based on the accumulation of thermal time. Each stage is characterized
by a different carbon allocation strategy, light use efficiency, and turnover rate. The biomass is allocated
into different parts of the crop (leaf, stem, root, and grain) with varied allocation parameters during the
different stages.

The DLEM-AG2.0 enhances the ability of the DLEM-Ag model to simulate crop phenology, biomass allocation,
and yield formation (Figure 2). It aims to simulate crop growth and yield as well as carbon, nitrogen, and
water cycles in agricultural ecosystems affected by multiple environmental factors. Other processes, such
as crop growth (e.g., photosynthesis, respiration, and nitrogen cycle), soil biogeochemistry (e.g., decomposi-
tion, nitrification, and fermentation), and air pollution effect (e.g., O3, see Text S4 in the supporting informa-
tion, cited with Felzer et al.,, 2004, 2005; Ollinger et al., 1997; Reich, 1987) are simulated in the same way as in
the DLEM-Ag. The detailed information of these processes has been described in our previously published
papers (e.g., Lu et al., 2012; Lu & Tian, 2013; Pan et al,, 2014, 2015; Ren et al,, 2007, 2010, 2011; Tian, Chen,
et al, 2010; Tian, Liu, et al., 2010; Tian, Melillo, et al., 2011; Tian, Xu, et al.,, 2011). However, in the DLEM-
AG2.0, different crops are specifically parameterized according to each crop type. In addition to incorporating
natural environmental driving factors, the module pays special attention to the role of agronomic practices,
including irrigation, fertilization, and rotation on crop growth and soil biogeochemical cycles. The following
sections describe the improved agricultural module in DLEM (DLEM-AG2.0) and its applications to China.
2.1.1. Phenology

The growth and development processes of crops are divided into eight growth stages, including sowing,
emergence, floral initiation, flowering, start of grain filling, end of grain filling, maturity, and harvest
(Figure S1 in the supporting information). The timing of each phase is determined by the accumulation of
thermal time (ATT, °C day) adjusted by various impact factors (e.g., vernalization, photoperiod, and N). The
length of each phase is determined by a fixed fraction of ATT (fATT), which is specified in the parameter table
(Table 1). The fATT for each growth stage is calculated as follows:

ATT = " [DTT x min(fp, fy)] M
> cowmg  DTT

Tave — Cardmin, Cardmin < Tave < Cardopt

(Cardmax — Tave) * (Cardop — Cardmin)
(Cardmax — Cardopt)
0, Tave < Cardmin Of Tave > Cardmax

DTT =

,Cardopt < Tave < Cardmax - (3)

where DTT is the daily thermal time (°C day), which can be reduced by the genetic photoperiod factor (f5) and
vernalization factor (fy); fp and f,, are the same as in the APSIM model (Mccown et al., 1996; see Text S1 in the
Supporting Information); T,y is the average 2-m air temperature for the current day (°C); Cardmn is the mini-
mum temperature required for photosynthesis (°C); Cardmax is the maximum temperature required for
photosynthesis (°C); and Cardyp: is the optimal temperature required for photosynthesis (°C; see Table 1),
as in the APSIM model and the SWAT (Soil Water Assessment Tool) model (Neitsch et al., 2005).

First, the total ATT between the plant and harvest dates for each crop was calculated for every grid cell based
on the 30-year average temperature from 1980 to 2010, using equations (1) and (3). The ATT maps vary with
the crop species and grids. Then, for each crop, we set the different ATT targets necessary to reach each
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Table 1

List of Major Parameter Values for Wheat, Maize, and Rice in China Used to Drive the DLEM-AG2.0

Value in this study

Value range in other studies

Parameter Varietal Parameter Wheat Maize Rice Wheat Maize Rice References
Control growth  Card_min (°C) 0 8 10 0-8 5-10 8-15 Lobell et al. (2012); Liu et al. (2016);
Card_opt (°C) 26 34 30 20-26 30-34 30-35 Jone et al. (2003); Neitsch et al.
Card_max (°C) 34 44 43 30-34 40-44 38-43 (2005); McMaster et al. (2008);
Mccown et al. (1996); Keating et al.
(2003); Zhang et al. (2004); Luo
(2011); Liu, Hubbard, et al. (2013);
Sanchez et al. (2014)
fATT_emerg 0.05 0.06 0.04 0.03-0.08 0.03-0.07 0.03-0.05 Levis et al. (2012); Drewniak et al.
fATT_floini 0.26 0.30 0.18 0.25-0.46 0.12-0.26 0.18-0.28 (2013); Mohanty et al. (2012);
fATT_flower 0.55 042 0.36 0.50-0.70 0.27-0.55 0.35-0.50 Chen et al. (2010a, 2010b); Zhang
fATT _startfill 0.62 0.58 0.57 0.59-0.77 0.38-0.65 0.57-0.70 et al. (2012); Liu, Hubbard, et al.
fATT _endfill 0.98 0.97 0.96 0.90-0.97 0.93-0.99 0.96-0.99 (2013); Sun et al. (2016)
fATT_mature 1.00 1.00 1.00 1.00 1.00 1.00
Default ATT (°C days) 1,910 1,650 2800 1,650-2,600 1,050-2,800 2,100-3,200
Rp 23 3.0 25 1.0-5.0 Mohanty et al. (2012); Chen et al.
Ry 15 — — 1.0-5.0 — — (20103, 2010b); Zhang et al. (2012)
Control yield Alloc_root See Figure S2 Max: 30-55% Max: 40-75% Max: 35-65% Mccown et al. (1996); Yu et al. (2006);
Alloc_leaf Max: 50-85% Max: 60-75% Max: 55-90% Feng et al. (2007); Chen et al.
Pgrainfill (mg dry weight Max: 2.3-6.0 Max: 9.0-12.0 Max: 2.0-2.8 (2010a, 2010b); Yang et al. (2010);
grain_1 day_I) CNERN (http://www.cnern.org/
Ngrain_stem 25 100 80 23-33 80-150 65-90 index.action); Liu, Li, et al. (2011);
(kernels/g stem) Levis et al. (2012); Zhang et al.
Dens_crop (ind/mz) 250 6.0 25 150-500 40-7.0 20-50 (2012); Drewniak et al. (2013); Cai
Maxlai 7.00 6.50 5.70 3.0-7.0 2.5-6.5 2.5-6.5 et al. (2013)
Max_grainweight 0.06 0.50 0.04 0.032-0.08 0.30-0.65 0.025-0.065

(g dry weight/grain)

Note. Card_min, Card_opt, and Card_max is minimum, optimum, and maximum temperature for photosynthesis (°C), respectively; fATT_emerg, fATT_floini,
fATT_flower, fATT _startfill, fATT_endfill, and fATT_mature mean fraction of accumulated thermal time (ATT) to reach emergence, floral initiation, flowering, start
of grain filling, end of grain filling, and maturity stages, respectively; default ATT represents the total number of ATT necessary to reach maturity (°C days); R, repre-
sents the sensitivities to photoperiod; Ry means the sensitivities to vernalization. Alloc_root and Alloc_leaf are allocation fraction of new accumulated biomasses
to root and leaf, respectively; Pgrainfill means potential rate of grain filling (mg dry weight grain71 day '); Ngrain_stem represents grain number per gram stem
dry weight (kernels/g stem); Dens_crop is crop density (ind/m<); Maxlai means maximum leaf area index; Max_grainweight represents maximum weight of grain
(g dry weight/grain).

growth stage, derived from the references (e.g., Chen et al., 2010a, 2010b; Liu, Hubbard, et al., 2013; Sacks
et al, 2010; Zhang et al., 2012). Thus, the fATTs for each crop were calculated and specified in the
parameter table (Table 1). Finally, in the model simulation, the crop growth required to reach each growth
stage, determined by regional climatology for the years 1900-2012, was based on equations (1)-(3).

2.1.2. Photosynthesis

The crop photosynthesis process in the DLEM-AG2.0 is the same as that for natural vegetation in the DLEM 2.0
version (Pan et al., 2014, 2015; Tian, Chen, et al,, 2010; Tian, Liu, et al., 2010). The gross primary productivity
(GPP) in the DLEM was calculated by scaling the leaf assimilation rates (g C m—2 day™") up to the whole
canopy (Farquhar et al., 1980; Collatz et al., 1991; Bonan, 1996; Sellers et al., 1996).

GPPyyn = 12.01 x 1078 X Agyq x plaig,, x dayl x 3,600 (4
GPPgpage = 12.01 X 1078 X Aghade X Plaignage x dayl x 3,600 (5)
GPP = GPPg,, + GPPgpade 6)

where GPPg,, and GPPg,qe are the GPP of sunlit and shaded canopy, respectively; Ay, and Agnage are the
assimilation rates of sunlit and shaded canopy, respectively; plais,m and plaishage are sunlit and shaded leaf
area indices, estimated as equations in Text S2 in the supporting information, respectively; dayl is the

ZHANG ET AL. 1685


http://www.cnern.org/index.action
http://www.cnern.org/index.action

nnnnnnnnnnnnnn
'AND SPACE SCiENCE

Journal of Advances in Modeling Earth Systems 10.1029/2017MS001253

daytime length (s), and 12.01 x107° is a constant to change the unit from pmol CO, to g C. The major para-
meters in estimating photosynthesis are listed in Table S1 in the supporting information.

Using similar methods to Collatz et al. (1991), the DLEM determines the C assimilation rate (A) as the mini-
mum of three limiting rates—w,, w;, we—which are functions that represent the assimilation rates as limited
by the efficiency of the photosynthetic enzymes system (Rubisco-limited), the amount of photosynthetically
active radiation captured by the leaf chlorophyll (light-limited), and the capacity of leaves to export or utilize
photosynthesis products (export-limited) for C3 species, respectively. For C4 species, w, refers to the phos-
phoenolpyruvate carboxylase limited rate of carboxylation. The detailed information (cited with Bonan,
1996; Saxton & Rawls, 2006; Asseng et al, 1998; Bernacchi et al,, 2001; Detmann et al., 2012; Drewniak
et al., 2013; Evans & Poorter, 2001; Farquha et al., 1980; Hund et al., 2005; Levis et al., 2012; Pan et al., 2014,
2015; Rebetzke et al., 2004; Ren et al,, 2012; Zhang et al,, 2016) is in Text S2 in the supporting information
2.1.3. Respiration

The process of crop respiration is also the same as that for natural vegetation in the DLEM 2.0 version (Pan et al,,
2014, 2015). The model estimates two types of respiration, which are maintenance respiration (Mr,
gCm™2day™") and growth respiration (Gr,g Cm~2 day ™). The Gr is calculated by assuming that the fixed part
of assimilated C will be used to construct new tissue (for turnover or plant growth). During these processes, it is
supposed that 25% of assimilated C (gross primary productivity, GPP) will be released back into the atmosphere
as growth respiration (Ryan, 1991). After the carbon consumed by tissue maintenance and plant growth respira-
tion has been subtracted, the remaining carbon is the net primary productivity (NPP, g C/m?.

Gr = 0.25GPP (7)
NPP = GPP — Gr — Mr (8)

Maintenance respiration is positively related to the temperature. The following equation is used to calculate
the maintenance respiration of leaf, sapwood, fine root, and coarse root:

Mr; = Rcoeff,i x Nj x f(Tave) 9

where i denotes the C pool of the different plant parts (leaf, sapwood, fine root, coarse root, or reproduction);
Mr; (g € m™2 day™ ") is the maintenance respiration of the pool i; Reoeff i is @ plant functional type-specific
respiration coefficient of plant part i (cited with Gifford, 1995; Pan et al,, 2014, 2015; Ren et al., 2012; Zhang
etal., 2016); N; (g N/m?) is the nitrogen content of pool i (for crop, is Nroot, Nieaf: Nstem, @aNd Ngrain, respectively);
and f(T,ye) is the temperature factor and is calculated as follows:

F(Tave) = £308.56 % (st tiees) 10)

where T, is the daily average air temperature (°C) for modeling aboveground C pools such as the leaves,
sapwood, and heartwood or soil temperature for modeling belowground pools such as coarse roots and
fine roots.

2.1.4. Allocation

The assimilated carbon deducted by respiration is the rest of the carbon (namely, NPP), which is ready to be allo-
cated to the different tissues. In DLEM-AG2.0, the crop is divided into four components or parts: the root, grain,
leaf, and stem. The daily carbon increment (AC) forms the total daily accumulated biomasses (AQ) of the crop.
Based on the allocation rule, daily accumulated biomasses (AQ) are used to update the root biomasses and then
partition to the (1) grain, then (2) the leaf (proportion of the remaining biomasses), and, finally, the (3) stem.

a. Biomass Partitioning to the Root
All biomasses in the root are considered the structural fraction, which cannot be retranslocated later to other parts.

AQyoot = 2.0 X ptoroot (11)
ptoroot = AC x rho (12)
ZHANG ET AL. 1686
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rho =3 x - x Alloc_root (13)
Llight + 2( Min (Wwateh Nnitrogen))
Light = Max( exp(—exteer X LAI),0.01) (14)
Wwater = Max(btrans, 0.01) (15)
Nhitrogen = Max(f(N),0.01) (16)
N

f(N) = min( leaf ,1) (17)

leaf _opt

where AQ,qq is the daily increment in the root biomasses (g m—2 day_1); ptoroot is the daily accumulated
root carbon (g C m™2 day™"); AC is the daily newly accumulated carbon (g C m~2 day™"); rho is the fraction
of the carbon allocated to the root; Alloc_root is the allocation fraction of the newly accumulated carbon to
the root (0-1), which is a cultivar-specific parameter in Table 1; Ljign is the scalar light available; W, e, is scalar
water available; Nnitrogen is the scalar available nitrogen; f(N) is a nitrogen factor that affects grain filling; LAl is
the actual leaf area, which is determined by the same calculation process as that of the natural vegetation in
the DLEM 2.0 version (Pan et al., 2014; Tian, 2002; Tian, Liu, et al.,, 2010); btrans is the water limitation factor on
evapotranspiration, which is calculated by soil water content (Pan et al.,, 2014; Tian, 2002; Tian, Chen, et al.,
2010); Nieat is the actual leaf nitrogen concentration; and Nieaf opt is the optimal leaf nitrogen concentration
for photosynthesis (g N/m?), which is calculated based on leaf carbon content and the minimum leaf CN
ratio (CNpin, leas Table S1 in the supporting information; Pan et al., 2014; Tian, 2002; Tian, Liu, et al,, 2010).
The ext..ef is the canopy light extinction coefficient, which is a cultivar-specific parameter in the parameter
table (Table S1 in the supporting information, refer from Awal et al., 2005; Calderini et al., 1997; Dingkuhn
etal, 1999; Flénet et al.,, 1996; Lunagaria & Shekh, 2006; Shearman et al., 2005). In the DLEM-AG2.0, nitrogen
cycling is the same as that for natural vegetation in the DLEM 2.0 version (e.g., Lu et al., 2012; Lu & Tian, 2013;
Ren et al., 2011; Tian, Xu, et al.,, 2011). The DLEM partitions C and N cycles into vegetation, litter, soil, microbe,
and product components (Figure S3 in the supporting information). The N processes are closely coupled with
the C processes in the biomass compartment through the specific C:N ratios. The N cycle is fully open; that is,
the N in the ecosystem can be exchanged in external sources and sinks through deposition, leaching, nitrous
gas emissions, and others. Detailed processes can be found in the Text S3 in the supporting information
(cited with Asseng et al,, 1998, 2011; Liu et al., 2008; Lu et al., 2012, 2013; Porter & Gawith, 1999; Rasterrer
et al, 1997; Ren et al., 2007, 2011, 2012; Xu et al.,, 2010; Tian, Chen, et al.,, 2010; Tian, Liu, et al., 2010; Tian,
Mellillo, et al.,, 2011; Tian, Xu, et al,, 2011; Wang & Engel, 2002; Zhang et al., 2007, 2016).

b. Biomass Partitioning to the Grain
Next, all or part of the available biomasses are partitioned into grains according to actual demand of the grain.

AQgrain = 2.0 x ptoprod (18)
ptoprod = Min <Ac9,ain x 0.8, D’g> (19)
ACgyrain = AC — ptoroot (20)
, 0, ACgmnin > Dgm;
Dg _ ‘ grain gm (21)
mm(Dgrain; ng - ACgrain)’ ACgrain < ng:,
Dgrain = Den_crop x Ngrain_plant x Pgrainfill x 0.5 x f(N) x ftair (22)
Dgm = Den_crop x Ngrain_plant x Max_grainweight x 0.5 (23)

. 0, crop stage < 5;
Ngrain_plant = . (24)
Ngraingem X CstemManthesis X 2.0, 5 < crop stage < 8;
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0, Tave <0or Tae > 45;
Tave
26.0°
1.0, 26 < Tue < 35;

45.0 — Tave
10.0

0 < Tape < 26;
For wheat, ftair =

, 35 < Tave <45;

0, Tave <60r Tae > 56.3;
(Tave — 6) x 0.4

70 ; 6= Tae<10;

Tave — 10) X 0.35

MJF 0.4, 10 < Tae <16;
For maize, ftair = - 612 0.25 (25)

%—5—0.75;16 < Tave < 22;

10, 22 < Tave < 307
Tave — 30.0
1.0 7ave2T7 30 < Tave <56.3;

0, Tae < 100r Tae > 43;
0.1 X (Tave — 10.0), 10 < Tpye < 20;
For rice, ftair = 1.0, 20 < Tave <37;

1.0

10-——
6.0 x (Tave — 37.0)’

37 < Tave <43;

where AQg.in is the daily available biomass for the grain (g m~2 day™"); ptoprod is the allocated grain carbon
(9 C m2 day™); ACgrain is the daily newly accumulated carbon for the grain (g C m~2 day™"); D;
(@ € m™2 day™") is the actual demands for grain limited by the potential grain demands (Dgrains
g C m™2 day™") and the maximum grain size (corresponding to Dgm. g C m~2 day™"); Dgrain is calculated
in the post-flowering growth phase (from flowering to the end of grain filling); Den_crop is the crop density
(plant/m?, Table 1); Ngrain_plant is the number of grains per plant (grain/plant, Table 1); Pgrainfill is the
potential rate of grain filling (g dry weight grain™" day™', Table 1); ftair is a function of daily mean tempera-
ture, which affects the rate of grain filling (0-1); Max_grainweight is the maximum weight of grain
(g dry weight/grain, which is a cultivar-specific parameter in Table 1; Ngraingnm, is the grain number per gram
of the stem dry weight (grain number/g), which is a cultivar-specific parameter in Table 1; and Cstem,pthesis iS
the allocated stem carbon from the anthesis stage to the harvest (g/plant).

c. Biomass Partitioning to the Leaf
The remaining biomasses (after the partitioning to the grains) are partitioned into the leaf based on a stage-
dependent function. Leaf biomasses are considered as structural and thus cannot be remobilized.

AQeat = 2.0 x ptoleaf 26)
ptoleaf = ACesr X Alloc_leaf (27)
ACieaf = AC — ptoroot — ptoprod (28)

where AQeef is the daily increment in the leaf biomasses (g m~2 day ™ '); ptoleaf is the allocated leaf carbon
(g Cm~2day ™ "); AGieat is the daily newly accumulated carbon for the leaf (g C m~2 day™'); and Alloc_leaf is
the allocated fraction of the available biomasses partitioned to the leaf (0-1), which are set values for the dif-
ferent crop types, as shown in Table 1.

d. Biomass Partitioning to the Stem
The whole remaining biomasses (if any) are partitioned into the stem. Until the stage “start of grain filling,”
65% (hstructural) Of these biomasses are allocated to structural biomasses, whereas the remaining 35% are
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allocated to the nonstructural biomasses. Afterward, all new biomasses allocated to the stem are for non-
structural biomasses (which can remobilized).

AQstem = 2.0 X ptostem (29)

ptostem = AC — ptoroot — ptoprod — ptoleaf (30)
AQstem structural = AQstem X Astructural @31
AQstem non-—strucutural = AQstem X (1 — Astructural) (32)

where AQgtem is the daily increment in the stem biomasses (g m~2 day’1); ptostem is allocated to the
stem carbon (g C m 2 day”); AQstem. structural 1S allocated to the stem structural biomasses (g m 2 day’1);
AQstem. non — strucutural 1S allocated to the stem nonstructural biomasses (g m—2 day’1); and Agryctural 1S
the percentage of remaining biomasses allocated to the stem structural biomasses.

2.1.5. Tissue Turnover

For a crop, the daily leaf-turnover rate is zero until the mature stage, and the reproduction turnover rate is
zero until the harvest stage. Other tissue turnover is similar to that of the natural plants in DLEM 2.0 (Tian,
2002; Tian, Liu, et al., 2010). Three main causes of leaf turnover are as follows: age (ftleaf_age), heat stress
(ftleaf_heat), and water stress (ftleaf_drought).

ftleaf_age = 1/(ftleaf x 365) (33)
ftleaf_drought = ftleaf_sen_water x (1 — btrans) (34)

0, Tmax < tairl;
0.05 x (Tmax — tair1)
Max((tair2 — tair1),0.0001)

,tair! < Tmax < tair2;

ftleaf_heat = ) (35)
0.05 + 0.35 x (Tmax — tair2) tair2 < Tmax < tair3:
Max((tair3 — air2),0.0001) ’ - - '
0.4, Tmax > tair3;
ftleaf _all = Min(1, Max(ftleaf_age, ftleaf_drought, ftleaf_heat)) (36)
harvest date
lifc= > (ptoleaf) x ftleaf all (37)

sowing date

where ftleaf is the leaf turnover time (year); ftleaf_sen_water is the slope of the linear equation relating to the
soil water stress to the leaf senescence rate (see Table S1 in the supporting information, refer from Boonjung
& Fukai, 1996; Steduto et al., 2009; Wolfe et al., 1988); ftleaf_age is the fraction of the leaf turnover rate caused
by the plant age; ftleaf_drought is the fraction of the leaf turnover rate caused by the water stress; Tmax is the
daily maximum temperature (°C); tair1, tair2, and tair3 are the three temperatures to define the heat-induced
leaf turnover rate (°C, Table S1 in the supporting information, refer from Lobell et al., 2012; Liu et al., 2016;
Jone et al., 2003; Neitsch et al, 2005; McMaster et al., 2008; McCown et al.,, 1996; Keating et al., 2003;
Zhang et al., 2004; Sharkey, 2005; Luo et al., 2011; Liu, Hubbard, et al., 2013; Sanchez et al., 2013); ftleaf_heat
is the fraction of leaf turnover rate caused by heat stress; and Itlfc is the leaf turnover carbon in the growing
season (g Cm 2 day™ ).

At the day of harvest, all grain is harvested. The harvested biomasses are as follows:

harvest date
Charv = Zstart of grain filling ptoprod (38)
Qharv = 2.0 X Chary (39)

For the crop residue, part is removed from the field due to management, such as with fire; the other part is
allocated to litter pools. The biomasses of the litter pools during harvest are calculated as follows:
Ichary = (Cueg — Charv) X (1 — fremov) (40)

where C,q is the total vegetation biomasses; Ichan is the carbon left from harvest; fremov is the
carbon/nitrogen loss percentage (%, nongrain residue returned to litter pool) for the part of the residues
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lost due to management (e.g., fire), which is a cultivar-specific parameter and is set as 30% in the parameter
table (Table S1 in the supporting information, refer from Drewniak et al., 2013).

2.2, Input Data

Several sets of georeferenced input data (0.25° x 0.25°) are compiled to drive the DLEM-AG 2.0 model, includ-
ing the following (see Figures S4-S6):

1.

Climate. Daily climate data (maximum, minimum, and mean air temperature; precipitation; relative
humidity; and downward shortwave radiation) during the period 1900-2012 were derived from the
Climate Research Unit—National Center for Environmental Prediction six-hourly climate data sets
(http://dods.extra.cea.fr/store/p529viov/cruncep/V4_1901_2012/readme.htm).

Atmospheric chemical components (atmospheric CO, concentration, AOT,, Oz index, and nitrogen
deposition). Atmospheric CO, concentration data were obtained from a spline fit of the Law Dome before
1959 (http://cdiac.ornl.gov/ftp/trends/co2/lawdome.smoothed. yr20) and from NOAA (http://www.esrl.
noaa.gov/gmd/ccgg/trends/global. html) during the period 1959-2012. Monthly atmospheric ozone con-
centration was represented by AOT,, (Felzer et al., 2005) and further interpolated to daily data (Tian, Ren,
et al,, 2016). Atmospheric nitrogen deposition data were obtained from the North American Carbon
Program Multi-scale Synthesis and Terrestrial Model Intercomparison Project (Wei et al., 2014).

Soil properties (soil texture, soil pH, and bulk density). The basic soil physical and chemical properties,
such as the soil texture, bulk density, and soil pH, were obtained from the Harmonized World Soil
Database (Wieder et al., 2014). The soil columns were separated for agricultural vegetation and natural
vegetation.

Land use and land cover data. Cropland distribution was derived from the 5-arc min resolution HYDE v3.1
data and aggregated to 0.25° (Goldewijk et al.,, 2011). The main crop categories in each grid were first
identified according to the global crop geographic distribution map (Leff et al., 2004) and were then
refined based on census data from Food and Agriculture Organization of the United Nations Statistics
Division and the Chinese Academy of Agricultural Sciences (http://www.caas.net.cn). Cropland distribu-
tion data set is on a yearly time step. We focused on 15 major crops in China that are representative of
both dry farmland and paddy fields of C5 and C,4 plants, including maize (spring and summer maize), rice
(early, single, and late rice), wheat (winter and spring wheat), soybean, barley, cotton, peanut, naked oat,
potato, rapeseed, sugarbeet, sorghum, sugarcane, sunflower, and millet. During the same period, we
assumed that only one crop type (the largest planting percentage) exists in a grid. For rotation practices,
we assumed that the fallow period between the growing seasons of two crops is more than 7 days. The
plant and harvest dates for each crop were derived from more than 770 agricultural meteorological sta-
tions in China, which were from the Chinese Academy of Agricultural Sciences (http://www.caas.net.cn)
and the China Meteorological Data Center (http://data.cma.cn/user/toLogin.html). Each county in China
has only one agriculture meteorological station, with an observational period from 1980 to present for
most stations. The observed variables include the cropping system, crop growth duration, yield, manage-
ment, disaster, soil physical properties, soil moisture, climate, and others for each major crop type. To
interpolate the station data to 0.25° spatial resolution for use in DLEM-AG 2.0, we made several assump-
tions. For the counties with observational data, we assumed that the plant and harvest dates for each crop
type in a grid cell are the same with observational data for each county. For those counties lacking agri-
culture meteorological stations, we assumed that crop plant and harvest dates were the same with those
in the nearest counties that have the same cropping systems. More detailed method was based on
Monfreda et al. (2008).

Agricultural management practices (irrigation, nitrogen fertilizer use, and rotation). Nitrogen fertilizer use
rates for China were derived from county-level census data (Tian, Yang, et al.,, 2015; Tian et al., 2012) and
Food and Agriculture Organization country-level statistical data (http://faostat3.fao.org/download/E/EF/E).
We use fertilizer data sets to establish spatial fertilizer application by crop type according to the method
of Potter et al. (2010). An irrigation map was also developed from the survey database at both county
and provincial levels for different crops. We assumed that the soil moisture would reach field capacity when
irrigated and that the irrigation amount is determined when the soil moisture of the top layer drops to 30%
of the maximum available water (i.e., field capacity minus wilting point) during the growing season in the
identified irrigated grids (Ren et al,, 2011). We used two major cropping systems, including the single
cropping system and double cropping system (summer maize-winter wheat, rice-winter wheat, early
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rice-late rice, and wheat-rapeseed). Because the cropping system is very important in China and directly
influences estimations of crop production, a contemporary rotation map was developed. The rotation
type in each grid was developed based on phenological characteristics derived from multitemporal
remote sensing images at 1-km spatial resolution (Yan et al, 2005), which was then aggregated into
0.25° resolution referencing the field observations from the Chinese Academy of Agricultural Sciences
(http://www.caas.net.cn) and China Meteorological Data Center (http://data.cma.cn/user/toLogin.html;
see Figure S6).

6. Other ancillary data, such as river network and topographic data. Further details of other input data can be
found in previous publications (Ren et al., 2011; Tian, Chen, et al,, 2015; Tian, Yang, et al., 2015; Xu et al.,
2010; Yang et al., 2014; Zhang et al., 2016).

2.3. Model Parameterization, Calibration, and Validation

The DLEM-AG2.0 had been parameterized, calibrated, and validated using field data collected from the
National Ecosystem Research Network of China (CNERN, http://www.cnern.org/index.action) and from the lit-
erature (e.g., Cai et al., 2013; Ding et al., 2007; Jing et al., 2007; Liu, Zhang, et al., 2012; Liu, Qu, et al,, 2012; Mo
etal, 2012; Wei et al,, 2007; Yu et al., 2006; Zhao et al., 2010; Figure S7). To simulate a crop, the DLEM-AG2.0
requires generic crop parameters that describe the growth and development characteristics and yield pro-
cesses parameters (Table 1). We first used the calculated parameters to run the model, and then we refined
the parameter values to get a better match between the simulated and measured values. Based on the agroe-
cosystem experimental observations and other research results (Asseng et al., 1998; Chen et al., 2010a, 2010b,
2016; Holzworth et al., 2014; Liu & Tian, 2010; Mohanty et al., 2012), the thermal time between the various
crop growth stages could be estimated. Genetic coefficients were determined after obtaining a close match
between the observed and predicted values for LA, total biomasses, grain yield, time to reach physiological
maturity, etc. Fine-tuning was usually accomplished within a £20% range of first-estimated values. The para-
meter values that resulted in minimal bias between the simulated and measured values at all sites were
selected. After calibration, these coefficients were used in the subsequent model validation (section 3.1).

To test model performance against independent data, we chose part of site-level data for calibration and the
other part for validation (section 3.1). The details on these agroecosystem experimental observations infor-
mation have been documented in Tables S2-S4 (cited with Cai et al,, 2013; Cui et al.,, 2012; Ding et al,,
2007; Dong et al., 2011; Feng et al., 2007; Han et al., 2013; Hu et al., 2016; Jing et al., 2007; Li et al., 2003;
Liu, Li, et al,, 2011; Liu, Qu, et al., 2012; Liu, Wang, et al., 2011, Liu, Zhang, et al., 2012; Liu et al.,, 2014, 2015;
Ma et al,, 2013; Mo et al.,, 2011, 2012; Pan et al., 2014; Wei et al., 2007; Xiao et al., 2005; Yang et al., 2010,
2015; Yu et al.,, 2006; Zhai et al., 2011; Zhao et al., 2010; Zhang et al., 2013, etc.) in the supporting information.
For wheat, cultivars used in calibration were the most popular winter wheat cultivars in Northern China Plain
(winter wheat-maize rotation system, Shandong, Hebei, and Henan), one of the most widely grown winter
wheat cultivar in the semiarid area of Northern China (continuous cropping, Shaanxi), and the predominant
spring wheat cultivars in the semiarid area of Northern China (single cropping, Inner Mongolia). The DLEM-AG
2.0 was parameterized for maize in three typical agroecosystems, including a winter wheat-maize rotation
system (Shandong, Hebei, and Henan), spring maize single cropping system (Heilongjiang), and spring maize
continuous cropping system (Shaanxi and Gansu). The observation data derived from single rice (Hailun,
Heilongjiang), rice-winter wheat rotation (Jiangpu, Jiangsu), and double rice (Changsha, Hunan) were used
to parameterize for rice in DLEM-AG 2.0. Measured and simulated LAl, biomass of organs, and yield were com-
pared graphically and analyzed statistically (Loague & Green, 1991).

Statistical indicators were used to evaluate the model performance, such as Student’s t test (P(t¥)), the
regression coefficient (8), the coefficient of determination (R?), the root mean square error (RMSE), and the
normalized root mean square error (NRMSE) between simulated and measured values. A model reproduces
experimental data best when R?is close to 1, P(t*) is less than 0.05, RMSE is similar to the standard deviation of
measured variables, and NRMSE is of the same order of magnitude as the coefficient of variance of the
measured variables. The simulation is considered excellent with NRMSE < 10%, good if 10-20%, acceptable
if 20-30%, and poor if >30% (Jamieson et al., 1991).

After the parameter values had been repeatedly calculated and refined to get a better match between simu-
lated and measured values, the final major parameter values that describe the growth and development
characteristics and yield processes for the running model were determined and are listed in Table 1. Based
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Table 2
Experimental Design
Nitrogen Land use and cover Nitrogen
Climate (CLM) CO, Ozone (03) deposition (Ndep) change (LUCQ) fertilizer (Nfer)
Reference 1900-1930 1900 1900 1900 1900 1900
All combined 1901-2012 1901-2012 1901-2012 1901-2012 1901-2012 1901-2012

Note. CLM, CO,, O3, Ndep, LUCC, and Nfer are abbreviations for climate, atmospheric CO, concentration, atmospheric O3 concentration, N deposition, land use
and cover change, and N fertilization, respectively. The time period indicates that driver data (e.g., climatic data and atmospheric chemistry data) were being used
in those periods.

on these parameter values, the DLEM-AG2.0-estimated LAI, aboveground biomasses (g/mz), and dry grain
weight (g/m?) for wheat, maize, and rice in representative sites agree well with the observed values
(Figures S8-510). For wheat, the RMSE (NRMSE) for the LAl (Figure S8a), aboveground biomasses
(Figure S8b), and dry grain weight (Figure S8c) were 0.57 (8.4%), 95.96 (6.3%), and 117.25 g/m2 (10.8%),
respectively. For maize, the RMSEs (NRMSEs) were 0.52 (7.6%), 121.13 (7.1%), and 113.84 g/m? (9.6%),
respectively (Figure S9). For rice, the RMSEs (NRMSEs) were 0.52 (7.6%), 121.13 (7.1%), and 113.84 g/m?
(9.6%), respectively (Figure $10). The overall R? ranged from 0.89 to 0.97 for the wheat, maize, and rice.
Therefore, the DLEM-AG2.0 simulated LAI, aboveground biomasses, and grain yield dynamics are good fit
with observation data at these calibrated sites in China.

2.4. Model Simulation

After the model validation, to evaluate crop yields, we tested a scenario experiment (see Table 2): all-
combined (climate, CO,, Os, N deposition, land use and cover change, and N fertilizer) multifactor changes.
The “all-combined” scenario would be close to typical agroecosystems in a relatively real world.

The model simulation at the country level follows a two-step procedure: an equilibrium simulation and a tran-
sient simulation. The model simulation begins with an equilibrium stage with long-term average climate data
for the period 1900-1930 and 1900 levels of atmospheric CO, concentrations and vegetation cover. The equi-
librium run is performed for 20,000 years at most or until the net carbon exchange between the atmosphere
and the region is less than 0.1 g C/m?, the change in soil water pool is less than 0.1 mm, and the change in soil
total nitrogen content is less than 0.1 g N/m? between two consecutive 10-year periods. Finally, the model
was fed by the time series of input data set in the transient mode. The model was run at a daily time step
for simulating crop development and growth. Data were analyzed using analysis of variance, and tests of sig-
nificance were done using a t test (Gomez & Gomez, 1984). The significant differences among treatments
were compared with the critical difference at the 5% level of probability.

3. Results
3.1. Model Performance of Crop Growth and Yield Simulations at Site Level

To validate the performance of the DLEM-AG2.0 simulations, we have focused on three key indexes for each
crop: the LAI, aboveground biomasses (g/m?), and dry grain weight (g/m?).

3.1.1. Leaf Area Index

The DLEM-AG2.0-estimated LAl was compared with observed data from wheat, maize, and rice, as shown in
Figure 3. The RMSEs (NRMSEs) of wheat (Figure 3a), maize (Figure 3b), and rice (Figure 3c) were 0.59 (8.5%),
0.76 (11.1%), and 0.54 (8.2%), respectively. The R? ranged from 0.88 to 0.92 (n = 73-279). The simulated peak
LAl for the wheat and maize is generally consistent with field observations at both the Yucheng and
Luancheng sites (Figure 4). However, because the LAl decline is overestimated in the model, the LAI values
are lower than observations in the late growth period. This causes lower grain biomass in the late growth
stages, producing lower yields than observed because less carbon is assimilated in the simulation.

The LAlin the model is controlled by the amount of carbon in the leaves and a constant specific leaf area (SLA;
the ratio of leaf area to dry leaf weight) for the different crop types. However, Tardieu et al. (1999) and
Amanullah et al. (2007) indicate that the SLA varies throughout the growing season and is affected by
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Figure 3. Comparison of the DLEM-AG2.0-estimated leaf area index (LAl) and aboveground biomasses with the observed
data for wheat (a, b), maize (c, d), and rice (e, f). The solid line represents the regression line. The dotted lines represent the
1:1 line and 95% confidence intervals. RMSE = root mean square error, NRMSE = normalized root mean square error.
nitrogen fertilizer and climate change. Varying SLA during the growth period is not simulated in the DLEM-
AG2.0, causing discrepancies between the observations and the simulations.
3.1.2. Biomass
The DLEM-AG2.0 simulated aboveground biomasses for wheat (Figure 3d), maize (Figure 3e), and rice
(Figure 3f) were consistent with the field observations. The RMSE (NRMSE) ranged from 73.19 to
130.90 g/m? (3.5% to 7.3%), and the R? ranged from 0.95 to 0.99 (n = 87-202). Although the aboveground
biomasses modeled well in the early growing season, the peaks at higher values were lower than observa-
tions made after the grain fill stage (Figure 5). The result might be due to two reasons. First, less photo-
synthate was produced because simulated LAls were lower than observations in the late growth period.
Second, when nitrogen was limited for grain development, simulated aboveground biomasses decrease
later in the growing season.
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Figure 4. Comparisons of the simulated and the measured leaf area index (LAI) for wheat and maize from 2002 to 2006 (a)
at Yucheng station and 2004-2008 (b) at Luancheng station.

The total aboveground biomass in the leaves, stems, and grains of the wheat, maize, and rice are shown in
Figure 6. For wheat, the NRMSE ranged from 4.7% to 9.2% and the R? ranged from 0.86 to 0.96 (n = 72—
134; Figures 6a—6¢). For maize, the NRMSE ranged from 6.9% to 15.3%, and the R? ranged from 0.80 to
0.94 (n = 79-133; Figures 6d-6f). For rice, the NRMSE ranged from 7.1% to 8.2%, and the R> ranged from
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Figure 5. Comparisons of the simulated and the measured aboveground biomasses for wheat, maize, and rice at (a)
Yucheng station (2002-2006) and (b) Luancheng station (2004-2008), respectively.
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Figure 6. Comparison of DLEM-AG2.0-estimated stem, leaf, and grain biomass with the observed data for wheat (a, b, ), maize (d, e, f), and rice (g, h, i), respectively.
The solid line represents the repetitive line. The dotted lines represent the 1:1 line. RMSE = root mean square error, NRMSE = normalized root mean square error.

0.90 to 0.96 (n = 59-71; Figures 6g-6i). Overall, the NRMSE for the simulated biomasses was less than 20%,
indicating the simulated stem, leaf, and grain biomasses for wheat, maize, and rice were generally consistent
with observations. However, the leaf biomasses in three crops are underestimated by the model because
nitrogen stress constrains growth since grain filling stage, in contrast to field observations (Figure 7).
Biomasses in the stem were comparable with observations during the growing season, whereas the grain
biomasses were underestimated. Because grain development relies on retranslocated carbon/nitrogen from
leaves and stems, which is not included in the current version of DLEM-AG2.0, the lower organ carbon than
observations is not surprising (Figure 7).

3.1.3. Yield

The DLEM-AG2.0-simulated yield for wheat, maize, and rice agreed well with observations (Figure 8). The
RMSE (NRMSE) of the wheat (Figure 8a), maize (Figure 8b), and rice (Figure 8c) were 563.95 (15.1%), 885.07
(12.4%), and 940.74 kg ha=' (10.8%), respectively. The R? ranged from 0.66 to 0.81 (n = 35-53). The discrepan-
cies between the observed and simulated yields were very likely attributed to the decline in the LAl and lim-
ited nitrogen. Thus, better simulation of LAl and N cycle will help improve model simulation for crop yield.

3.2. Model Estimation and Evaluation of Crop Yield at National Level During the Period 1980-2012

The DLEM-AG2.0-based estimation indicates that the average annual crop yields in China for the period from
1980 to 2012 were 9.0 x 10'°, 1.2 x 10", 11.9 x 10'°, 12.8 x 10'°, and 4.7 x 10'° kg for winter wheat, spring
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Figure 7. Comparisons of the simulated and the measured stem (a), leaf (b), and grain (c) biomasses for the winter wheat-
summer maize rotation at Luancheng station (2004-2008).

wheat, maize, rice, and late rice, respectively (Table 3). Comparison between the DLEM-AG2.0-simulated
average annual crop yields and the Ministry of Agriculture of the People’s Republic of China statistics (http://
zzys.agri.gov.cn/nonggingxm.aspx) is shown in Figure 9. The DLEM-AG2.0-simulated median yields agreed with
observed yields for all crops. Both maize and wheat were overestimated, perhaps due to the lack of insect
damage and disease analysis in the model. However, the full range of simulated yields for maize and wheat fell
within the range of the observed yields. The range of simulated rice yields was spread larger than the observed
values, and the median is slightly lower than the observed median yields. The yield has a significant depen-
dence on fertilizer rates both in the model and in the field. DLEM-AG2.0 underestimated rice yield likely as a
result of much higher fertilizer use in some region than those in the model.

In general, simulated annual yields for winter wheat, spring wheat, maize, rice, and late rice in China were con-
sistent with observations (Figure 10). The RMSE (NRMSE) of the simulated yields for these crops was 889.7 x 107
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Figure 8. Comparison of DLEM-AG2.0-estimated yield with the observed data for wheat, maize, and rice. The solid line represents the repetitive line. The dotted lines
represent the 1:1 line. RMSE = root mean square error, NRMSE = normalized root mean square error.
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Table 3
Mean ( 107 kg) and the Trend ( 107 kg/year) of Annual Yields for Wheat, Maize, and Rice in China During 1980-2012

Maize Winter wheat Spring wheat Rice Late rice
Year Mean Trend Mean Trend Mean Trend Mean Trend Mean Trend
1980s 9,845.19 314.69* 7,361.21 275.41* 1,086.44 32.28* 10,390.98 348.56* 3,770.06 125.40*
1990s 12,135.67 52.55 9,370.07 24.50 1,208.65 —14.53 12,795.58 103.03* 4,709.52 85.39*
2000s 13,217.48 61.29 9,993.04 5.69 1,175.02 15.28 14,535.16 74.66 5,229.95 0.66
1980-2012 11,910.80 154.72* 9,044.87 119.31* 1,164.51 6.43% 12,781.88 188.15* 4,662.22 70.12%

Note. The asterisks indicate statistical significance at 0.95 level (*p < 0.05).

(17.6%), 98.1 x 107(16.3%), 1,069.4 x 107(16.4%), 1,441.9 x 107(19.3%), and 476.4 x 10’ (17.6%)kg, respectively
(Figure 10). The trends of the DLEM-AG2.0-simulated yields for winter wheat, spring wheat, maize, rice, and late
rice were 119.3 x 107, 6.4 x 107, 154.7 x 107, 188.2 x 107, and 70.1 x 10’ kg/year, respectively (Figure 10). The
difference in the trend between the observed and simulated yields was insignificant (p > 0.05).

3.3. Regional Variability in Crop Yield

The DLEM-AG2.0-estimated average yields for wheat (winter wheat, and spring wheat), maize, and rice (early
rice + single rice, late rice) showed a significant temporal-spatial change during the last 30 years (Figures 10-13
and Figures S11-512). The interannual yield of wheat, maize, and rice in China was shown in Figure 10, which
was caused mainly by variations in the climate, atmospheric chemical components (e.g., CO, concentration),
and agricultural management practices (e.g., fertilization, land use, and cover change). In general, frequent rain-
fall, higher CO, concentration, and appropriate fertilizer allow the model to simulate higher yields. For winter
wheat, higher yields (4,000-6,000 kg/ha) were distributed mainly in the winter wheat-summer maize rotation
regions of Northern China Plain and winter wheat-rice rotation regions of Jiangsu and Yunnan provinces; less
than 4,000 kg/ha of yields were associated with the semiarid regions (Shaanxi, Gansu, and Ningxia provinces)
and the Southwestern mountainous regions (Guizhou and Sichuan provinces; Figure 11). For spring wheat,
most regions showed a ranged of 0 to 2,000 kg/ha (Figure S11). For maize, the spring maize regions of the
Northeast Plain showed a yield of 4,000-6,000 kg/ha, Xinjiang province and the semiarid area showed a yield
of less than 4,000 kg/ha, and the highest yields were located in the southern regions (Figure 12). For rice
(early + single rice), the Northeast Plain and the Southwestern regions (Guizhou and Yunnan provinces) showed
the highest yield, with more than 6,000 kg/ha; the southern regions showed a yield ranging from 4,000 to
6,000 kg/ha (Figure 13). The yield of late rice over the southern regions was 4,000-6,000 kg/ha (Figure S12).
Although the simulated yield at regional level is generally consistent with the provincial and national yield
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Figure 9. DLEM-AG2.0-simulated (filled) and the observed (unfilled; data from the Ministry of Agriculture of the People’s
Republic of China) yields for maize (M_S, M_O), rice (R_S, R_O), late rice (LR_S, LR_O), winter wheat (W_S, W_O), and
spring wheat (SW_S, SW_O) in China. The box plots show the 10, 25, 50, 75, and 90 percentiles of annual yield. The dotted
lines represent mean value.
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Figure 10. Comparisons of the simulated and the measured yield trend for winter wheat (a), spring wheat (b), maize (c), rice (d), and late rice (e) from 1980 to 2012.
RMSE = root mean square error, NRMSE = normalized root mean square error.

surveys, direct spatial comparison of yields with observations is difficult because DLEM-AG2.0 simulation in this
study runs at a relatively coarse spatial resolution, and high spatial resolution yield data across China are cur-
rently not available for such a data-model comparison.

4, Discussion

4.1. Effects of Environmental Factors on Crop Yield

As the various environmental stresses tend to interact with each other and exert a combined impact on the
agroecosystem, natural and human-induced environmental changes have significantly influenced crop
yields in complex ways (Felzer et al., 2005; Ren et al,, 2012; Schindler, 2001; Tao et al., 2009). Previous stu-
dies have proved a positive correlation between yields and the atmospheric CO, concentration, atmo-
spheric N deposition, and land use and cover change, whereas a negative correlation has been observed
among the yield, climate change, and O3 concentration (e.g., Aunan et al,, 2000; Holland et al., 1997;
Neff et al.,, 2000; Ren et al.,, 2007; Schindler & Bayley, 1993). Nitrogen deposition/fertilizer application could
result in increases in crop yield in nitrogen-limited agroecosystems (Matson et al., 2002; Neff et al., 2000;
Saleque et al,, 2004; Swarup & Singh, 1989; Wang et al., 2003; Zhou et al.,, 2011) or could lead to a yield
reduction in nitrogen-saturated ecosystems (Magill et al., 2000; Swarup & Singh, 1989; Zhou et al,, 2011).
However, the effect of a single factor could be enhanced or could be weakened. The direction of the
response could be reversed by its interactions with other environmental factors (Ren et al., 2012). For exam-
ple, elevated tropospheric ozone (Os) concentrations could reduce crop yields through direct or indirect
influences on photosynthesis and stomatal conductance (Avnery et al.,, 2011; Booker et al., 2009; Farage
et al,, 1991; Martin et al,, 2000; Pell et al., 1997; Tjoelker et al.,, 1995; Wittig et al., 2007). When combined
with extreme climate conditions (e.g., heat and drought) or intensive management (i.e., excessive fertilizer
application), O3 pollution can substantially reduce the yield (Felzer et al., 2005; Ren et al.,, 2007, 2010; Tian,
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Figure 11. Spatial distribution of the DLEM-AG2.0-estimated winter wheat yield in China in the 1980s (a), the 1990s (b), the 2000s (c), and the study period

1980-2012 (d).

Ren, et al., 2016). For instance, simulated by the DLEM-Ag (a previous version), China’s crop yield would
have increased significantly (5% and 10%) if O levels had been reduced (50% and 100%); spring wheat
was the most sensitive to Os, showing a reduction of 5.5% in extreme droughts and a reduction of 11.6%
with extreme droughts with O3 (Tian, Ren, et al., 2016). Therefore, the overall effects on crop production of
multiple environmental stresses that interactively influence the photosynthesis process, the stomatal
conductance, and nutrient/water conditions, etc., are complex. Here we compared our results under all-
combined multifactor changes with the observations from 1980 to 2012 at both site and country levels. In
general, the DLEM-AG2.0 simulations agreed well with the observations, with NRMSE of less than 20% for
the simulations. To increase the estimation accuracy for the crop yield, addressing the interactive effect of
multiple factors is clearly of critical importance.

4.2. Improvements of Crop Yield Simulation

Agriculture has serious effects on the terrestrial carbon cycle, and the consequences of agricultural manage-
ment for carbon fluxes have been included only recently in earlier land surface modeling within the DLEM
framework (Ren et al,, 2011). Previous versions of the agricultural module in DLEM either presented a crude
representation of crops or omitted many traits that are important, such as a process-based crop phenology
and biomass allocation. DLEM-AG2.0, which is capable of simulating phenological development, leaf area
growth, biomass allocation for different crop components (leaf, stem, root, and grain) at a daily time step,
and the mechanism of crop development have been represented because of integrating interactive
process-based crop models. For example, DLEM-Ag used MODIS LAl and substantial observation data to
develop the phenology for each cropping system. The results of simulation are frequently limited by the
quantity and quality of the data and might come with a significant amount of uncertainty. In DLEM-AG2.0,
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the timing of each growth stage is determined by the ATT (°C day) adjusted by various impact factors,
especially the critical temperature thresholds. At present, the impacts of minimum critical temperature
threshold (Card,in) on crop production were represented in some atmosphere-land models (e.g.,, CLM-
Crop) by GDD. However, the effect of the optimal (Card,p) and maximum (Cardn,,) critical temperature
thresholds on crop production is lacking in many models, which may bias the projection of climatic
impacts. Temperature is one of the major environment factors affecting the growth, development, and
yields of crops especially the rate of development. On one hand, crops have basic temperature
requirements for completing a specific growth stage or the entire lifecycle. On the other hand, extremely
high and low temperatures can have detrimental effects on crop growth, development, and yield,
particularly at a critical growth stage such as anthesis (Asseng et al., 2011). Lobell et al. (2012) noted that
when exposed to temperatures greater than 34 °C, wheat can experience desiccated pollen and increased
kernel abortion during flowering, reducing the net photosynthesis rates, increasing vapor pressure deficit,
and speeding up senescence. The effects of extreme temperature episodes close to the time of anthesis
were more important to the yield of many crops than the effects of the increase in mean seasonal
temperature of approximately 2 °C (Wheeler et al., 2000). Crops grow and develop ideally within the range
of optimal temperature and at a slower rate beyond the range (Luo, 2011). Information on critical
temperature thresholds for calculating crop growth stages can be used to improve crop models for
accurate quantification of the impacts of temperature change on crop production at regional level.

Compared with the DLEM-Ag, another important improvement in the DLEM-AG2.0 was the integration of
dynamic biomass allocation into the agricultural module. The DLEM-Ag estimated the crop yield simply
through constant harvest index of each crop type (Ren et al, 2012). However, the harvest index is a
location-specific and cultivar-specific parameter that is affected by crop variety, climate change, and other
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Figure 13. Spatial distribution of the DLEM-AG2.0 estimated rice yield in China in the 1980s (a), the 1990s (b), the 2000s (c), and the study period 1980-2012 (d).

environmental factors. For example, Prasad et al. (2006) indicated that the harvest index of rice would
decrease significantly in response to high-temperature stress. The biomass allocation in DLEM-Ag2.0 is
affected by allocation coefficients, light, water, nitrogen, critical temperature thresholds, and others, which
optimize the mechanism and improve the accuracy of model simulations. Moreover, we could simulate the
leaf, stem, and grain biomasses of each crop type, which would be conducive to further modifying DLEM-
Ag2.0 and validating the accuracy of the simulation.

4.3. Uncertainties and Future Research Need

Our estimation of crop yield has some uncertainties resulting from the input data, model structure, and
parameters. First, the DLEM-AG2.0 simulation needs a number of data sets that include climate, atmospheric
chemical components, soil properties, land use and land cover, and agricultural management practices data.
Many of the data used, while available at the national or global scale, still come with a significant amount of
uncertainties. This requirement highlights the level of data needed to run the experiments in a representa-
tive way. Our goal was to expand the range of environmental factors to attempt to simulate a real ecological
system. However, notably, some of the uncertainties associated with the individual data sets could limit the
results. For example, because of limited data regarding Oz concentrations throughout China, we used the
modeled AOT,4o values developed by Felzer et al. (2005) and Ren et al. (2007). Although the index has
often been used to represent vegetation damage due to Os, the accumulated hourly Os; dose below a
threshold of 40 p.p.b. in p.p.b./hr would be ignored and could limit the accuracy of the results. However,
our photosynthesis module has the potential ability to incorporate O3 concentrations as input if the O3 flux
data are available.
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Second, the current DLEM-AG2.0 framework allows natural vegetation to change with time; meanwhile, man-
aged croplands as they are treated in this model can expand or contract. We have incorporated the map of
China’s crop geographic distribution with regional agricultural census data derived from the Food and
Agriculture Organization of the United Nations Statistics Division along with the multiple rotation types to
generate the distribution of crop fields. However, discrepancies exist among the various crop distribution
maps because the cultivation area ratio of a crop in a grid is less than 0.1 for some regions of the world.
Moreover, we should recognize that the mechanisms acting in real ecological systems, especially for inten-
sively managed agroecosystems, are very complicated. For example, other agricultural practices (e.g., tillage,
residue management, and automatic planting date adjustment), natural disturbance (e.g., insect pests), and
varieties distribution also affect crop carbon sequestration potential in croplands.

Third, we have set several different ATT targets for crop growth gained from field experiments, which are
location-specific or cultivar-specific parameters. However, other studies have indicated that the validity of
such values for regional simulation is questionable (e.g., lizumi et al., 2014). Two opposite points of view exist
about the ATT requirements of crops. One is that crop always requires the same amount of the ATT and
depends only on the cultivar to reach a certain developmental stage (Sacks & Kucharik, 2011). The opposite
view is that the ATT required for the completion of a given growth period of a particular cultivar is not con-
stant but may vary with other environmental conditions (Liu, Hubbard, et al., 2013; Major et al., 1983). For
example, Liu, Hubbard, et al. (2013) showed that for maize cultivar of ZD958, the ATT requirements during
the vegetative growth period increased significantly, but the ATT requirements during the reproductive
growth period decreased significantly with latitudes northward in China. Thus, even though we have cali-
brated the parameters to minimize the difference of yields between simulation and observation, the aggre-
gation of parameters might be the major issue and increase the inaccuracy of the results. Next, we will
improve the method of calculating ATT for crop development, considering longitude/latitude/elevation,
bright sunshine hours, soil water stress, and others.

We also recognized that grain biomass is lower than the observations after the grain filling stage in our study,
likely due to the missed reallocation processes in DLEM-AG2.0. In fact, if the supply in assimilation (daily bio-
masses increase) is insufficient to meet grain demand, then retranslocation may occur to meet the shortfall
(Bouman et al., 2001; Keating et al., 2003; Mccown et al., 1996; Uehara & Tsuji, 1991). For example, from the
start of grain filling, the wheat allows a total retranslocation of up to 20% of Stem biomasses per day
(Mccown et al., 1996). Thus, as grain development relies on retranslocated biomass from the leaves and
stems, the retranslocation scheme should be included in the next release of the DLEM-AG2.0.

Although the crop representation in the DLEM-AG2.0 is flexible for extrapolating to a global scale, rigorous
testing is needed to ensure that crop behavior is consistent with regional observations. For example, our
parameter calibration focused on crop species grown in China; expanding these parameters to capture other
cultivars grown more broadly would improve the model’s ability to capture global crop productivity.
Uncertainty may also come from the inadequacy of the model representations. Currently, the DLEM-AG2.0
has not yet been coupled with the atmospheric circulation models with land processes and thus is unable
to simulate the feedbacks between the crop growth and the climate system. Terrestrial ecosystem and cli-
mate system interact with each other through biophysics and biochemical processes that involve the trans-
fers of energy, water, and other matters (Osborne et al.,, 2009). For example, LAl of the crop will give a
feedback influence on climate change through biophysical responses to surface fluxes of greenhouse gases,
albedo, and heat fluxes, which will lead to the changes of temperature, humidity, wind, and precipitation
(lizumi et al., 2014; Levis et al., 2012; Osborne et al., 2009). Several additional issues have been identified
for advancing our research in the future, including (1) improving model temporal and spatial resolutions of
input data because of the complicated cropping systems and land management practices in China, (2)
improving reallocation processes for driving the model, (3) improving regional and global parameterization
for main crop cultivars, and (4) improving the method of calculating ATT for crop development.

5. Conclusion

In this work, the DLEM-AG2.0, a new version of the DLEM Agricultural module, has been developed for better
simulation of the dynamic processes of crop growth and development at a daily time step, while including
growth period development, biomass accumulation, biomass allocation, and yield formation. In addition to
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making comparisons to previous studies, this work addressed how crop yield has been affected by multifac-
tor environmental changes, including climate change, CO, concentration, tropospheric Oz, nitrogen deposi-
tion, land use/cover change, N fertilizer, and irrigation. A comparison of simulated crop yield for wheat, maize,
and rice with the measured and survey data at both site and country levels during 1980-2012 revealed that
the DLEM-AG2.0 simulations agreed well with the observations with the NRMSE of the simulations less than
20%. Rigorous validation with both site-specific and regional observations is necessary for a global applica-
tion of the agricultural module. Further advancement of agricultural modeling within the Earth system mod-
eling framework will require consideration of human perception and behavior for adapting and mitigating
global change.
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