Two-dimensional hybrid simulation of the dayside reconnection layer and associated ion transport
Metadata
Show full item recordAbstract
The structure of the reconnection layer at the dayside magnetopause is studied by using a two-dimensional (2-D) hybrid code. The simulation domain is a rectangle in the at plane around an X line at the magnetopause. In our previous study the guide magnetic field B-y was assumed to be zero. In the present simulation the effects of a finite B-y on the reconnection layer are studied. In addition, the influence of shear flows on the magnetic reconnection is also investigated. In the cases with a shear flow speed DeltaV = 0, as near the subsolar region, a large-amplitude rotational discontinuity is present on the magnetosheath side of the reconnection layer, across which the magnetic field changes direction from the magnetosheath to the magnetosphere. A high-speed accelerated flow is present on the magnetospheric side of the rotational discontinuity. For a higher-latitude reconnection in the Northern Hemisphere, where a shear flow is present across the magnetopause, the structure of the reconnection layer northward of the X line is very different from that southward. Northward of the X line, the rotational discontinuity with a larger field rotational angle exists on the magnetospheric side if the shear flow speed DeltaV > 0.33(V-Am - V-As), where V-Am and V-As are the Alfven speeds in the magnetosphere and the magnetosheath, respectively. Below the X line, a thin, strong rotational discontinuity is always present on the magnetosheath side. By tracing the orbits of individual ion particles, we have performed a detailed analysis of ion transmission and reflection at the magnetopause. The average transmission (reflection) rate of the magnetosheath ions is found to be similar to 85% (15%). The reflection of the magnetosheath ions occurs mainly in the inner boundary layer.